scholarly journals Improvement of Power Capacity of Electric-Assisted Bicycles Using Fuel Cells with Metal Hydride

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6272
Author(s):  
Chiharu Misaki ◽  
Daisuke Hara ◽  
Noboru Katayama ◽  
Kiyoshi Dowaki

Hydrogen is an alternative fuel that is currently being used in fuel cell (FC) applications. This study focuses on electric-assisted bicycles (electric bicycles) powered by FCs and aims to determine the configuration of an FC system based on power demand. Metal hydrides (MHs) were used in the investigation to facilitate the containment of FC systems with improved hydrogen storage capacity. The flow performance was evaluated in our previous study; thus, here we focused on understanding the hydrogen flow characteristics from storage and the weight gain of the cartridge. Through experiments performed on existing electric-assisted bicycles, the relationship between the load weight and the power demand was evaluated. Furthermore, the power capacity of Li-ion batteries and FC systems was compared. No loss in performance was observed up to an additional payload weight of 8 kg. Combining the FC unit with an auxiliary battery offers up to 6.81× benefits with a significant weight capacity (8 kg). It is inferred that the current MH tank design does not support the required amount of hydrogen. The hydrogen flow could be supported by the exhaust heat of the FC to the MH.

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1012
Author(s):  
Takuya Mabuchi ◽  
Koki Nakajima ◽  
Takashi Tokumasu

Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.


RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 2273-2280 ◽  
Author(s):  
Tao Huang ◽  
Yaxiong Yang ◽  
Kaichao Pu ◽  
Jiaxun Zhang ◽  
Mingxia Gao ◽  
...  

A first attempt to understand the relationship between the particle size and the electrochemical properties of SiO was conducted.


2015 ◽  
Vol 6 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Yeon-Joo Kim ◽  
Sang-Min Lee ◽  
Seok Hong Kim ◽  
Hyun-Soo Kim
Keyword(s):  

2020 ◽  
Author(s):  
Paolo Ghigna ◽  
Lorenzo Airoldi ◽  
Martina Fracchia ◽  
Umberto Anselmi-Tamburini ◽  
Paola D'angelo ◽  
...  

2020 ◽  
Author(s):  
Peiyao Wang ◽  
Bangchuan Zhao ◽  
Jin Bai ◽  
Kunzhen Li ◽  
Hongyang Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document