Transition‐Metal Phosphorus Trisulfides and its Vacancy Defects: Emergence of a New Class of Anode Material for Li‐Ion Batteries

ChemSusChem ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3855-3864 ◽  
Author(s):  
Rajkumar Jana ◽  
Chandra Chowdhury ◽  
Ayan Datta
2017 ◽  
Vol 5 (17) ◽  
pp. 8087-8094 ◽  
Author(s):  
Yutao Dong ◽  
Dan Li ◽  
Chengwei Gao ◽  
Yushan Liu ◽  
Jianmin Zhang

Self-assembled 3D urchin-like Ti0.8Sn0.2O2–rGO was fabricated by a one-step hydrothermal process as an anode material for high-rate and long cycle life LIBs.


2014 ◽  
Vol 70 (a1) ◽  
pp. C20-C20
Author(s):  
Evgeny Antipov ◽  
Nellie Khasanova

Ninety percent of the energy produced today come from fossil fuels, making dramatically negative impact on our future due to rapid consumption of these energy sources, ecological damage and climate change. This justifies development of the renewable energy sources and concurrently efficient large storage devices capable to replace fossil fuels. Li-ion batteries have originally been developed for portable electronic devices, but nowadays new application niches are envisaged in electric vehicles and stationary energy storages. However, to satisfy the needs of these rapidly growing applications, Li-ion batteries require further significant improvement of their properties: capacity and power, cyclability, safety and cost. Cathode is the key part of the Li-ion batteries largely determining their performance. Severe requirements are imposed on a cathode material, which should provide fast reversible intercalation of Li-ions at redox potential close to the upper boundary of electrolyte stability window, possess relatively low molecular weight and exhibit small volume variation upon changing Li-concentration. First generation of the cathode materials for the Li-ion batteries based on the spinel (LiM2O4, M – transition metal) or rock-salt derivatives (LiMO2) has already been widely commercialised. However, the potential to further improve the performance of these materials is almost exhausted. The compounds, containing lithium and transition metal cations together with different polyanions (XmOn)p- (X=B, P, S, Si), are now considered as the most promising cathode materials for the next generation of the Li-ion batteries. Covalently-bonded structural frameworks in these compounds offer long-term structural stability, which is essential for good cyclability and safety. Further advantages are expected from combining different anions (such as (XO4)p- and F- ) in the anion sublattice, with the hope to enhance the specific energy and power of these materials. Various fluoride-phosphates and fluoride-sulphates have been recently discovered, and some of them exhibit attractive electrochemical performance. An overview of the research on the cathode materials for the Li-ion batteries will be presented with special emphasis on crystallography as a guide towards improved properties important for practical applications.


2004 ◽  
Vol 151 (12) ◽  
pp. A2189 ◽  
Author(s):  
Xiaodong Wu ◽  
Zhaoxiang Wang ◽  
Liquan Chen ◽  
Xuejie Huang

2021 ◽  
pp. 160242
Author(s):  
Xiuqin Min ◽  
Yingying Zhang ◽  
Mengtian Yu ◽  
Yuqin Wang ◽  
Anbao Yuan ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4531
Author(s):  
Mihaela-Ramona Buga ◽  
Adnana Alina Spinu-Zaulet ◽  
Cosmin Giorgian Ungureanu ◽  
Raul-Augustin Mitran ◽  
Eugeniu Vasile ◽  
...  

Porous silica-based materials are a promising alternative to graphite anodes for Li-ion batteries due to their high theoretical capacity, low discharge potential similar to pure silicon, superior cycling stability compared to silicon, abundance, and environmental friendliness. However, several challenges prevent the practical application of silica anodes, such as low coulombic efficiency and irreversible capacity losses during cycling. The main strategy to tackle the challenges of silica as an anode material has been developed to prepare carbon-coated SiO2 composites by carbonization in argon atmosphere. A facile and eco-friendly method of preparing carbon-coated SiO2 composites using sucrose is reported herein. The carbon-coated SiO2 composites were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, cyclic voltammetry, and charge–discharge cycling. A C/SiO2-0.085 M calendered electrode displays the best cycling stability, capacity of 714.3 mAh·g−1, and coulombic efficiency as well as the lowest charge transfer resistance over 200 cycles without electrode degradation. The electrochemical performance improvement could be attributed to the positive effect of the carbon thin layer that can effectively diminish interfacial impedance.


2014 ◽  
Vol 47 ◽  
pp. 80-83 ◽  
Author(s):  
Dandan Sun ◽  
Mingshan Wang ◽  
Zhengyang Li ◽  
Guangxin Fan ◽  
Li-Zhen Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document