scholarly journals Evaluation of DFIGs’ Primary Frequency Regulation Capability for Power Systems with High Penetration of Wind Power

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6178
Author(s):  
Changgang Li ◽  
Zhi Hang ◽  
Hengxu Zhang ◽  
Qi Guo ◽  
Yihua Zhu ◽  
...  

Accompanying the continuous increase in wind power penetration, the power system inertia is reduced, and the system frequency regulation performance deteriorates. Wind turbine generators are required to participate in primary frequency regulation (PFR) to support system frequency. Here, the PFR capability of the widely-used doubly-fed induction generator (DFIG) is evaluated to estimate the participation of the DFIG in system frequency control. The frequency regulation model of the DFIG is established and briefly discussed. The equivalent PFR droop coefficient is then deduced from the model using a small signal increment method to evaluate the DFIG’s PFR capability. Key factors affecting the equivalent droop coefficient are studied, and the droop control is optimized to keep the equivalent droop coefficient in the desired range. The proposed method is verified utilizing a provincial power grid model of China.

2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1687 ◽  
Author(s):  
Irene Muñoz-Benavente ◽  
Anca D. Hansen ◽  
Emilio Gómez-Lázaro ◽  
Tania García-Sánchez ◽  
Ana Fernández-Guillamón ◽  
...  

An alternative approach for combined frequency control in multi-area power systems with significant wind power plant integration is described and discussed in detail. Demand response is considered as a decentralized and distributed resource by incorporating innovative frequency-sensitive load controllers into certain thermostatically controlled loads. Wind power plants comprising variable speed wind turbines include an auxiliary frequency control loop contributing to increase total system inertia in a combined manner, which further improves the system frequency performance. Results for interconnected power systems show how the proposed control strategy substantially improves frequency stability and decreases peak frequency excursion (nadir) values. The total need for frequency regulation reserves is reduced as well. Moreover, the requirements to exchange power in multi-area scenarios are significantly decreased. Extensive simulations under power imbalance conditions for interconnected power systems are also presented in the paper.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6485
Author(s):  
Melanie Hoffmann ◽  
Harold R. Chamorro ◽  
Marc René Lotz ◽  
José M. Maestre ◽  
Kumars Rouzbehi ◽  
...  

The increasing deployment of wind power is reducing inertia in power systems. High-voltage direct current (HVDC) technology can help to improve the stability of AC areas in which a frequency response is required. Moreover, multi-terminal DC (MTDC) networks can be optimized to distribute active power to several AC areas by droop control setting schemes that adjust converter control parameters. To this end, in this paper, particle swarm optimization (PSO) is used to improve the primary frequency response in AC areas considering several grid limitations and constraints. The frequency control uses an optimization process that minimizes the frequency nadir and the settling time in the primary frequency response. Secondly, another layer is proposed for the redistribution of active power among several AC areas, if required, without reserving wind power capacity. This method takes advantage of the MTDC topology and considers the grid code limitations at the same time. Two scenarios are defined to provide grid code-compliant frequency control.


2020 ◽  
Vol 12 (23) ◽  
pp. 9850
Author(s):  
Mengqi Qing ◽  
Fei Tang ◽  
Fusuo Liu ◽  
Dichen Liu ◽  
Nianchun Du ◽  
...  

With the increasing wind power in power systems and the wide application of frequency regulation technology, the accurate calculation of the limit wind power capacity in systems is critical to ensure the stability of the frequency and guide the planning of wind power sources. This paper proposes an analytical method for calculating the maximum wind generation penetration under the constraints of frequency regulation control and frequency stability taking doubly fed induction generator as an example. Firstly, the frequency-domain dynamic model of the doubly fed induction generator is established considering the supplementary frequency proportion-differentiation control under small disturbance. The equivalent inertia time constant of the doubly fed induction generator is calculated. On this basis, the frequency response model of the power system with the consideration of wind power integration in frequency regulation control is constructed. Then, the frequency-domain analytical solution of the system frequency is obtained. Finally, with the constraint by the steady-state deviation and dynamic change rate of the system frequency, the maximum wind generation penetration is analytically solved. The accuracy of the proposed analytical calculation method for the limit value of the percentage of wind power is verified by MATLAB/Simulink.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Cheng Guo ◽  
Delin Wang

With the development of complex renewable energy systems, the frequency control and regulation of the power grid powered by such renewable energies (e.g., wind turbine) are more critical, since the adopted different power generators can lead to frequency variations. To address the frequency regulation of such power grids, we will present a variable coefficient coordinated primary frequency regulation scheme for synchronous generator (SG) and doubly fed induction generator (DFIG). The variable adjustment coefficient of DFIG is defined according to the current reserve capacity, which can be applied to adjust different operation conditions to regulate the frequency variation within a predefined allowable range. Since the DFIG can make full use of the reserve wind power in the system frequency regulation, the proposed method can address both the frequency regulation response and the economic performance. Simulation results indicate that the proposed coordinated control scheme can achieve satisfactory frequency regulation response and lead to reduced demand for frequency regulation of SG.


2014 ◽  
Vol 1070-1072 ◽  
pp. 319-326
Author(s):  
Zhi Xu ◽  
Hong Tao Wang ◽  
Cheng Ming He

For the rotor speed of variable speed wind turbine (VSWT) is decoupled from system frequency, the system equivalent rotary inertia and primary frequency control ability are decreased with wind power penetration growing continuously. To solve the problems, VSWT with additional frequency control was studied. The dynamic characteristics of input and output power of VSWT during participating in system frequency regulation are analyzed. The relationships between the active power increments and the duration of VSWT participating frequency control are quantified. A coordination frequency control strategy base on time sequence control is proposed. According to the control strategy, the VSWTs can participate in frequency regulation depending on the coordination of wind speed, power increments and duration. The simulation results demonstrate the effectiveness of the proposed control strategy, which can make full use of the frequency regulation ability of VSWTs as well as minimize the negative effects on system frequency.


2012 ◽  
Vol 608-609 ◽  
pp. 579-583
Author(s):  
Yao Fei Hou ◽  
Guang Kai Li ◽  
Jian Ding ◽  
Jie Shen ◽  
Song Teng

The variable-speed doubly-fed wind turbines (DFIG) were able to participate in frequency regulation by adding an additional frequency control. The influences exerted by the additional frequency control of DFIG units and conventional units governors on system frequency emergency control measures were analyzed. When the power shortage is small, it is recommended to consider the DFIG units to participate in frequency regulation, While a large power shortage it is not recommended.


2011 ◽  
Vol 347-353 ◽  
pp. 1442-1453
Author(s):  
Ying Cheng Xue ◽  
Neng Ling Tai

The conventional decoupling controls of variable-speed doubly fed wind turbines provide minimal support to the regulation of system frequency. The characteristics of doubly fed induction generator (DFIG) wind turbines and conventional power plans are compared, and the contributions of DFIG to system inertial response and frequency regulation are investigated. The influence of auxiliary loop parameters on the inertial response is illustrated. We also introduce a novel algorithm to enhance the participation of DFIG in existing frequency regulation mechanisms. The proposed approach takes advantage of the fast responses associated with DFIGs. The control system consists of four functional modules, namely, frequency control, rotational speed delay recovery, speed protection, and coordination control with conventional generators. The simulation results show that the control strategy has a fast response speed to the transient frequency error, thereby proving that wind farms can participate in system frequency regulation to a certain extent.


2014 ◽  
Vol 953-954 ◽  
pp. 743-747 ◽  
Author(s):  
Dong Ding ◽  
Jian Lin Li ◽  
Shui Li Yang ◽  
Xiao Gang Wu ◽  
Zong Qi Liu

Coal-fired power units show defects in meeting the demands of maintaining power system frequency stability. This is mainly due to their inherent characteristics and a continuous increase in renewable generation. Battery Energy Storage System (BESS) has such advantages as fast response and precise tracking, thus may be a new frequency regulation method. On basis of the principle of energy storage for regulation, capacity configuration of energy storage is made as an alternative to coal-fired power unit accounting for both primary and secondary frequency regulation. Example calculations and simulation in MATLAB/SIMULINK are conducted to verify the feasibility of the proposed capacity configuration methods and the reliability of the energy storage system for regulation.


2013 ◽  
Vol 427-429 ◽  
pp. 644-647
Author(s):  
Xin Shou Tian ◽  
Zhong Xu Han ◽  
Jian Feng Tian

The system equivalent rotary inertia and frequency control capability are decreased with growing continuously of wind power penetration, because the doubly fed induction generator (DFIG) is decoupled from system frequency, which will bring a new challenge to the large wind power integration. On the basic of analyzing power-speed characteristic of DFIG which operates at different wind speeds, the de-load operating strategy of DFIG based on coordinated controlling of over-speed and changing pitch was proposed, at the same time the de-load operating curve of DFIG was given through calculating, and the enhancing of kinetic energy was proved by theoretical analysis. And the power reserve capacity of system is enhanced.


Sign in / Sign up

Export Citation Format

Share Document