scholarly journals Profitability of Energy Supply Contracting and Energy Sharing Concepts in a Neighborhood Energy Community: Business Cases for Austria

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 921
Author(s):  
Carolin Monsberger ◽  
Bernadette Fina ◽  
Hans Auer

To ensure broad application of renewable and energy-efficient energy systems in buildings and neighborhoods, profitable business models are vital. Energy supply contracting helps building residents to overcome the barrier of high upfront investment costs while additionally reducing risks related to energy-saving mechanisms. This study examines profitability for energy contractors in a variety of business cases that simultaneously ensure energy cost savings for the residents. A mixed-integer linear optimization model is developed for a neighborhood energy community, consisting of three buildings with diverse usages. In the process, the optimum capacities of building-attached and building-integrated photovoltaics, a heat pump and a gas-fired mini combined heat and power unit are determined to cover the energy community’s electricity and heat load. Results show that cross-domain contracting within energy communities is highly profitable for both, the contractor and the residents, while the extent depends on the accounting method, assumed interest rate and depreciation time. The additional application of energy-efficiency measures in/on the buildings, constituting a combination of energy supply and energy performance contracting, further increases profitability. The investigation of several sensitivities shows that high grid energy costs for electricity and gas enhance profitability of local energy technologies, leading to an increase in optimal technology capacities.

Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 112-145
Author(s):  
Daniel Then ◽  
Johannes Bauer ◽  
Tanja Kneiske ◽  
Martin Braun

Considering the European Union (EU) climate targets, the heating sector should be decarbonized by 80 to 95% up to 2050. Thus, the macro-trends forecast increasing energy efficiency and focus on the use of renewable gas or the electrification of heat generation. This has implications for the business models of urban electricity and in particular natural gas distribution network operators (DNOs): When the energy demand decreases, a disproportionately long grid is operated, which can cause a rise of grid charges and thus the gas price. This creates a situation in which a self-reinforcing feedback loop starts, which increases the risk of gas grid defection. We present a mixed integer linear optimization model to analyze the interdependencies between the electricity and gas DNOs’ and the building owners’ investment decisions during the transformation path. The results of the investigation in a real grid area are used to validate the simulation setup of a sensitivity analysis of 27 types of building collectives and five grid topologies, which provides a systematic insight into the interrelated system. Therefore, it is possible to identify building and grid configurations that increase the risk of a complete gas grid shutdown and those that should be operated as a flexibility option in a future renewable energy system.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1443 ◽  
Author(s):  
Zhang ◽  
Yuan

The increasing demand for applying energy performance contracting (EPC) for urban energy conservation has resulted in a significant amount of publications over the past decade. This study tries to identify future research trends in the subject of EPC through analyzing 127 journal papers published from 2008 to 2018. Based on the analysis and discussion of the EPC research, several main research trends were identified. The research results reveal an increasing research interest in EPC over the period. The findings imply that case study is the major research method and descriptive analysis and statistical analysis are primarily used for data analysis. In addition, EPC research in the past decade focused on five major research topics, which are ‘implementation of EPC projects’, ‘EPC mechanism and business models’, ‘decision-making in EPC projects’, ‘Energy Service Companies (ESCOs) in EPC projects’, and ‘risk management in EPC projects’. Based on the five research topics, future research trends and directions in EPC were identified as well. The findings of this study can be informative and valuable for guiding future research in EPC, and are particularly helpful for researchers who are keen to open a new window of investigating EPC issues worldwide.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 664 ◽  
Author(s):  
Daniel Then ◽  
Christian Spalthoff ◽  
Johannes Bauer ◽  
Tanja M. Kneiske ◽  
Martin Braun

Currently, natural gas provides more than a third of the energy used in European residential buildings. As part of the general decline of fossil fuels, this gas consumption is predicted to drop in several countries by 25–100% by 2050. We model a decline in gas consumption in 57 urban German distribution grids looking for the influence of grid-specific factors and different distribution network operator (DNO) strategies on grid charges. We find a functional relationship between grid length and customer amount described by a power law, with an exponent correlated with structural grid parameters. The disordered structure inherent to grids typically results in a decline in grid costs much slower than the corresponding demand. We introduce a simplified yearly cash flow calculation model based on the power law and validate it against mixed integer linear optimization. A comparison of the total costs of operation and resulting grid charges for several scenarios and strategies estimates the effects on DNO business models. Depending on a combination of DNO’s strategy and customers’ exit pattern, grid charges may increase, accelerating the substitution of gas-bound technologies that might develop into a self-reinforcing feedback loop, leading to grid defection.


Author(s):  
T. Simpkins ◽  
D. Cutler ◽  
K. Anderson ◽  
D. Olis ◽  
E. Elgqvist ◽  
...  

REopt is an energy planning platform offering concurrent, multiple technology integration and optimization capabilities to help clients meet their cost savings and energy performance goals. The REopt platform provides techno-economic decision support analysis throughout the energy planning process, from agency-level screening and macro planning to project development to energy asset operation. REopt employs an integrated approach to optimizing the energy costs of a site by considering electricity and thermal consumption, resource availability, complex tariff structures including time-of-use, demand and export rates, incentives, net metering, and interconnection limits. Formulated as a mixed integer linear program, REopt recommends an optimally sized mix of conventional and renewable energy, and energy storage technologies; estimates the net present value associated with implementing those technologies; and provides the cost-optimal dispatch strategy for operating them at maximum economic efficiency. The REopt platform can be customized to address a variety of energy optimization scenarios including policy, microgrid, and operational energy applications. This paper presents the REopt techno-economic model along with two examples of recently completed analysis projects.


Sign in / Sign up

Export Citation Format

Share Document