scholarly journals Machine Learning-Based Cooperative Spectrum Sensing in Dynamic Segmentation Enabled Cognitive Radio Vehicular Network

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1169
Author(s):  
Mohammad Asif Hossain ◽  
Rafidah Md Noor ◽  
Kok-Lim Alvin Yau ◽  
Saaidal Razalli Azzuhri ◽  
Muhammad Reza Z’aba ◽  
...  

A vehicle ad hoc network (VANET) is a solution for road safety, congestion management, and infotainment services. Integration of cognitive radio (CR), known as CR-VANET, is needed to solve the spectrum scarcity problems of VANET. Several research efforts have addressed the concerns of CR-VANET. However, more reliable, robust, and faster spectrum sensing is still a challenge. A novel segment-based CR-VANET (Seg-CR-VANET) architecture is therefore proposed in this paper. Roads are divided equally into segments, and they are sub-segmented based on the probability value. Individual vehicles or secondary users produce local sensing results by choosing an optimal spectrum sensing (SS) technique using a hybrid machine learning algorithm that includes fuzzy and naïve Bayes algorithms. We used dynamic threshold values for the sensing techniques. In this proposed cooperative SS, the segment spectrum agent (SSA) made the global decision using the tri-agent reinforcement learning (TA-RL) algorithm. Three environments (network, signal, and vehicle) are learned by this proposed algorithm to determine primary (licensed) users’ activities. The simulation results indicate that, compared to current works, the proposed Seg-CR-VANET produces better results in spectrum sensing.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Sajjad Khan ◽  
Liaqat Khan ◽  
Noor Gul ◽  
Muhammad Amir ◽  
Junsu Kim ◽  
...  

Cognitive radio is an intelligent radio network that has advancement over traditional radio. The difference between the traditional radio and the cognitive radio is that all the unused frequency spectrum can be utilized to the best of available resources in the cognitive radio unlike the traditional radio. The core technology of cognitive radio is spectrum sensing, in which secondary users (SUs) opportunistically access the spectrum while avoiding interference to primary user (PU) channels. Various aspects of the spectrum sensing have been studied from the perspective of cognitive radio. Cooperative spectrum sensing (CSS) technique provides a promising performance, compared with individual sensing techniques. However, the existence of malicious users (MUs) highly degrades the performance of cognitive radio network (CRN) by sending falsified results to a fusion center (FC). In this paper, we propose a machine learning algorithm based on support vector machine (SVM) to classify legitimate SUs and MUs in the CRN. The proposed SVM-based algorithm is used for both classification and regression. It clearly classifies legitimate SUs and MUs by drawing a hyperplane on the base of maximal margin. After successful classification, the sensing results from the legitimate SUs are combined at the FC by utilizing Dempster-Shafer (DS) evidence theory. The effectiveness of the proposed SVM-based classification algorithm is demonstrated through simulations, compared with existing schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
S. Tephillah ◽  
J. Martin Leo Manickam

Security is a pending challenge in cooperative spectrum sensing (CSS) as it employs a common channel and a controller. Spectrum sensing data falsification (SSDF) attacks are challenging as different types of attackers use them. To address this issue, the sifting and evaluation trust management algorithm (SETM) is proposed. The necessity of computing the trust for all the secondary users (SUs) is eliminated based on the use of the first phase of the algorithm. The second phase is executed to differentiate the random attacker and the genuine SUs. This reduces the computation and overhead costs. Simulations and complexity analyses have been performed to prove the efficiency and appropriateness of the proposed algorithm for combating SSDF attacks.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 335
Author(s):  
Shweta Alpna ◽  
Amrit Mukherjee ◽  
Amlan Datta

The proposed work illustrates a novel technique for cooperative spectrum sensing in a cognitive radio (CR) network. The work includes an approach of identifying secondary users (SUs) based on Hierarchical Maximum Likelihood (HML) technique followed by Vector Quantization. Initially, the arrangement of the SUs are been observed using HML with respect to a spatial domain and then the active SUs among them are identified using VQ. The approach will not only save the energy, but the decision of the real-time and dynamic cooperative communication network becomes more accurate as we can predict the behavior of SUs movement and spectrum sensing by each individual SU at that particular  place. The results and simulations of the real-time experiment justifies with the proposed approach. 


2020 ◽  
Author(s):  
Rahil Sarikhani ◽  
Farshid Keynia

Abstract Cognitive Radio (CR) network was introduced as a promising approach in utilizing spectrum holes. Spectrum sensing is the first stage of this utilization which could be improved using cooperation, namely Cooperative Spectrum Sensing (CSS), where some Secondary Users (SUs) collaborate to detect the existence of the Primary User (PU). In this paper, to improve the accuracy of detection Deep Learning (DL) is used. In order to make it more practical, Recurrent Neural Network (RNN) is used since there are some memory in the channel and the state of the PUs in the network. Hence, the proposed RNN is compared with the Convolutional Neural Network (CNN), and it represents useful advantages to the contrast one, which is demonstrated by simulation.


2021 ◽  
pp. 63-71
Author(s):  
Vaishali S. Kulkarni ◽  
Tanuja S. Dhope(Shendkar) ◽  
Swagat Karve ◽  
Pranav Chippalkatti ◽  
Akshay Jadhav

Sign in / Sign up

Export Citation Format

Share Document