scholarly journals Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1178
Author(s):  
Valliyil Mohammed Aboobacker ◽  
Puthuveetil Razak Shanas ◽  
Subramanian Veerasingam ◽  
Ebrahim M. A. S. Al-Ansari ◽  
Fadhil N. Sadooni ◽  
...  

Exploitation of conventional energy resources has caused a deliberate increase in the emitted carbon in the atmosphere, which catalyzes global warming trends. This is a matter of concern, especially in Qatar, where fossil fuels (oil and gas) are largely relied upon for power production. The dependency on such resources could be gradually reduced by utilizing clean and renewable energy. Resource characterization is an important step to evaluate the potentiality of available renewable energy sources. Wind energy is one among them, which has not been assessed reliably so far in Qatar. We analyzed the wind energy potential along the onshore and offshore areas of Qatar using 40 years (1979–2018) of hourly wind data extracted from the ECMWF Reanalysis v5 (ERA5) database. Monthly, seasonal, annual, and decadal mean wind power densities have been derived. Reliability tests have been carried out at select onshore and offshore locations. Trends and inter-annual variability have been assessed. The study reveals that the available wind resources are generally moderate but consistent with no intense trends during the 40 year period. An inter-annual variability in wind power has been identified, which has secured links with the El Niño–Southern Oscillation (ENSO).

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2357 ◽  
Author(s):  
Andrea Farkas ◽  
Nastia Degiuli ◽  
Ivana Martić

The European Union is a leading patron for the introduction of renewable energy, having set a target that renewable sources will represent at least 27% of total energy consumption by the year 2030. Presently, the most significant Croatian renewable resource is hydropower, which is presently at its peak and will not develop further because of limited hydro resources. Therefore, the share of electricity generation from onshore wind farms in Croatia during in recent years has grown significantly. However, as the Croatian government has already made most of the concessions for possible locations of wind farms, the aim of the present study is to evaluate a different renewable energy resource, wave energy. An assessment of the offshore wave energy potential in the Croatian part of the Adriatic Sea is performed using data taken from WorldWaves atlas (WWA). WWA is based on satellite measurements, validated against buoy measurements and reanalysed by numerical wave modelling. This assessment was done for seven locations, and mean yearly energy is calculated for two offshore wave energy converters. Capacity factors were calculated for annual as well as for seasonal levels, and it was concluded that the bulk of the energy would be generated in autumn and winter. The most probable extreme significant wave height was determined at the investigated locations as well. Furthermore, the offshore wind energy potential was evaluated and compared to the wave energy potential.


2018 ◽  
Vol 64 ◽  
pp. 06003
Author(s):  
Rijkure Astrida

Renewable energy sources (wind energy, solar energy, hydroelectricity, ocean energy, geothermal energy, biomass and biofuels) are alternatives to fossil fuel that help to reduce greenhouse gas emissions, diversify energy supplies and reduce dependency on markets of unsustainable and volatile fossil fuels, particularly oil and gas. Wind energy is one of the renewable energy sources and is considered to be self-renewable as it is the result of the Sun’s activity. Using wind energy is a rapidly developing industry today, and more and more wind turbines are installed worldwide every year, land-based wind turbines being more widespread than offshore ones. In Latvia, spread of land-based wind parks is hampered by unsettled land ownership rights, while the deployment of wind parks in the sea is a new field for all Baltic States. The neighbouring countries Estonia and Lithuania have developed their own projects for offshore wind parks, therefore the topicality of the development of wind farms in the territorial waters of Latvia has also increased. Experts have proposed best options and their locations. When assessing possibilities for development of wind parks and their capacity, the following economic factors were evaluated: construction and connection costs, potential operational costs and energy prices. The aim of this study is to develop the methodology for calculating the area of a potential wind park by considering the safety distance to shipping routes and height of the wind turbines, as well as for calculating the potential capacity of a wind park.


2020 ◽  
pp. 12-17
Author(s):  
M.P. Vu ◽  
V.B. Doan ◽  
H.N. Nguyen

Currently, the structure of Vietnam‘s energy sources is changing, with renewable energy sources starting to play an increasing role in meeting the electricity demand and reducing greenhouse gas emissions from fossil energy sources. Vietnam's energy development strategy suggests building some renewable energy centers, of which Ninh Thuan is the first province to become the national renewable energy center. This is because of Ninh Thuan’s endowment as a province having the highest renewable energy potential in Vietnam. The development of a large renewable energy center allows power system planners to overcome the mismatch in timescales associated with expanding transmission power grid and renewable energy generation. Besides, the renewable energy center can facilitate large-scale renewable energy and storage projects. The province of Ninh Thuan, however, is located far from the main load centers of Vietnam, which is why the economic indicators need to be calculated and analyzed. This paper presents the results of an analysis of economic indicators of major renewable electricity sources in Ninh Thuan (onshore wind power, offshore wind power, and solar power) to provide scientific arguments for developing a renewable energy center in Vietnam.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4435
Author(s):  
Travis C. Douville ◽  
Dhruv Bhatnagar

The significant offshore wind energy potential of Oregon faces several challenges, including a power grid which was not developed for the purpose of transmitting energy from the ocean. The grid impacts of the energy resource are considered through the lenses of (i) resource complementarity with Variable Renewable Energy resources; (ii) correlations with load profiles from the four balancing authorities with territory in Oregon; and (iii) spatial value to regional and coastal grids as represented through a production cost model of the Western Interconnection. The capacity implications of the interactions between offshore wind and the historical east-to-west power flows of the region are discussed. The existing system is shown to accommodate more than two gigawatts of offshore wind interconnections with minimal curtailment. Through three gigawatts of interconnection, transmission flows indicate a reduction of coastal and statewide energy imports as well as minimal statewide energy exports.


2014 ◽  
Vol 10 (1) ◽  
pp. 38-45
Author(s):  
Angel Terziev ◽  
Ivan Antonov ◽  
Rositsa Velichkova

Abstract Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements), the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.


2020 ◽  
Vol 10 (18) ◽  
pp. 6398
Author(s):  
Meysam Majidi Nezhad ◽  
Riyaaz Uddien Shaik ◽  
Azim Heydari ◽  
Armin Razmjoo ◽  
Niyazi Arslan ◽  
...  

The elaboration of a methodology for accurately assessing the potentialities of blue renewable energy sources is a key challenge among the current energy sustainability strategies all over the world. Consequentially, many researchers are currently working to improve the accuracy of marine renewable assessment methods. Nowadays, remote sensing (RSs) satellites are used to observe the environment in many fields and applications. These could also be used to identify regions of interest for future energy converter installations and to accurately identify areas with interesting potentials. Therefore, researchers can dramatically reduce the possibility of significant error. In this paper, a comprehensive SWOT (strengths, weaknesses, opportunities and threats) analysis is elaborated to assess RS satellite potentialities for offshore wind (OW) estimation. Sicily and Sardinia—the two biggest Italian islands with the highest potential for offshore wind energy generation—were selected as pilot areas. Since there is a lack of measuring instruments, such as cup anemometers and buoys in these areas (mainly due to their high economic costs), an accurate analysis was carried out to assess the marine energy potential from offshore wind. Since there are only limited options for further expanding the measurement over large areas, the use of satellites makes it easier to overcome this limitation. Undoubtedly, with the advent of new technologies for measuring renewable energy sources (RESs), there could be a significant energy transition in this area that requires a proper orientation of plans to examine the factors influencing these new technologies that can negatively affect most of the available potential. Satellite technology for identifying suitable areas of wind power plants could be a powerful tool that is constantly increasing in its applications but requires good planning to apply it in various projects. Proper planning is only possible with a better understanding of satellite capabilities and different methods for measuring available wind resources. To this end, a better understanding in interdisciplinary fields with the exchange of updated information between different sectors of development, such as universities and companies, will be most effective. In this context, by reviewing the available satellite technologies, the ability of this tool to measure the marine renewable energies (MREs) sector in large and small areas is considered. Secondly, an attempt is made to identify the strengths and weaknesses of using these types of tools and techniques that can help in various projects. Lastly, specific scenarios related to the application of such systems in existing and new developments are reviewed and discussed.


Author(s):  
P. Venkaiah ◽  
B. K. Sarkar

Abstract The advantages of renewable energy sources are available freely in nature, inexhaustible, produce either no or little pollution and low gestation period. Among all renewable energy sources, wind energy has become one of the leading resources for power production in the world as well as in the India. According to WWEA, the wind turbine installation capacity in the world has been reached over 539.291GW by the end of 2017. The entire wind power installed capacity by the end of 2017 covers more than 5% of global demand of electricity. In India, the present wind power installation capacity on October, 2017 was over 32.7GW and wind energy contribution is 55% of the total renewable energy capacity in the country. Inspite of having sharp growth rate in wind in India, only a fraction of wind energy has been tapped until now out of 302 GW wind potential which is available above 100 m height on shore. Practical horizontal axis wind turbine converts kinetic energy in the wind into useful energy by using airfoil blades. Blade element momentum (BEM) theory becomes very popular due to its simplicity in mathematical calculation as well as accuracy. Hydraulic pitch actuation system has certain advantages due to its versatility, ability to produce constant force and torque irrespective of the disturbances outside of the system, ease and accuracy of control, simplicity, safety and economy. In the present study a semi rotary actuator has been utilized for turbine pitch actuation. In order to extract maximum power from available wind, fractional order PID controller (FOPID) has been developed for pitch control of wind turbine rotor blade. The performances of PID as well as FOPID controller have been compared with available wind data. The performance of FOPID controller was satisfactory compare to PID controller.


2011 ◽  
Vol 187 ◽  
pp. 97-102 ◽  
Author(s):  
Liang Liang ◽  
Jian Lin Li ◽  
Dong Hui

Recently, more and more people realize the importance of environment protection. Electric power generation systems using renewable energy sources have an advantage of no greenhouse effect gas emission. Among all the choices, wind power can offer an economic and environmentally friendly alternative to conventional methods of power supply. As a result, wind energy generation, utilization and its grid penetration in electrical grid is increasing world wide. The wind generated power is always fluctuating due to its time varying nature and causing stability problem. Inserting energy storage system into large scale wind farm to eliminate the fluctuation becomes a solution for developing large scale renewable energy system connected with grid. The topology diagram and control strategy are presented in this paper. According to the simulation result, it could be indicated that embedding energy storage system into wind power system could improve the access friendly and extend system functions. This paper shows that integrating energy storage system into wind power system will build a more reliable and flexible system for power grid.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Dragana Milosavljević ◽  
Tomislav Pavlovic ◽  
Dragoljub Mirjanić ◽  
Danica Piršl

This paper reviews the current state of the renewable energy use in Serbia. Further on, the paper describes energy potential and gives examples of the use of solar energy, wind energy, hydropower, geothermal energy, biomass and biogas in Serbia. Extensive body of information is given about support systems and measures of incentives for the investment in the construction and sale of electricity from plants using renewable energy sources. In conclusion, achieved results of the use of renewable energy sources in Serbia and the incentives for their use are presented.


Sign in / Sign up

Export Citation Format

Share Document