scholarly journals Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2002
Author(s):  
Huiqian Guo ◽  
Yue Yang ◽  
Tongrui Cheng ◽  
Hanyu Zhou ◽  
Weijia Wang ◽  
...  

In recent years, the steel-truss natural draft dry cooling technique has received attention owing to its advantages in better aseismic capability, shorter construction period, and preferable recycling. For cooling towers generating the draft force of air flow, its configuration may impact the thermal and flow performance of the steel-truss natural draft dry cooling system. With regard to the issue, this work explored the thermal and flow characteristics for the steel-truss natural draft dry cooling systems with four typical engineering tower configurations. By numerical simulation, the pressure, flow, and temperature contours were analyzed, then air mass flow rates and heat rejections were calculated and compared for the local air-cooled sectors and overall steel-truss natural draft dry cooling systems with those four tower configurations. The results present that tower 2 with the conical/cylindrical configuration had slightly lower heat rejection compared with tower 1 with the traditional hyperbolic configuration. Tower 3 with the hyperbolic/cylindrical configuration showed better thermo-flow performances than tower 1 at high crosswinds, while tower 4 with the completely cylindrical configuration appeared to have much reduced cooling capability under various crosswind conditions, along with strongly deteriorated thermal and flow behaviors. As for engineering application of the steel-truss natural draft dry cooling system, the traditional hyperbolic tower configuration is recommended for local regions with gentle wind, while for those areas with gale wind yearly, the hyperbolic/cylindrical integrated cooling tower is preferred.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1308
Author(s):  
Mohan Liu ◽  
Lei Chen ◽  
Kaijun Jiang ◽  
Xiaohui Zhou ◽  
Zongyang Zhang ◽  
...  

In recent years, natural draft dry cooling systems with only one tower have been adopted in some 2 × 660 MW power-generating units owing to the advantage of lower construction costs. The operating cases of two power-generating units and one power-generating unit will both appear based on the power load requirement, which may lead to very different flow and heat transfer performances of this typical cooling system. Therefore, this research explores the local thermo-flow characteristics of air-cooled heat exchangers and sectors, and then analyzes the overall cooling performance of the above two operating cases under various wind conditions. Using the numerical modeling method, the results indicate that the flow and heat transfer performance of this cooling system decreases significantly in the case of one unit with half sectors dismissed. At wind speeds lower than 8 m/s, the difference in turbine back pressure between two units and one unit appears obviously higher than in other wind conditions, even reaching 4.37 kPa. Furthermore, the air-cooled heat exchanger in the lower layer always has better cooling capability than that in the upper layer, especially in conditions where there is an absence of wind and under low wind speeds. The operating case of one unit is not recommended for this dry cooling system because of the highly decreased energy efficiency. In conclusion, this research could provide theoretical support for the engineering operation of this typical natural draft dry cooling system in 2 × 660 MW power plants.


2016 ◽  
Vol 102 ◽  
pp. 168-184 ◽  
Author(s):  
H.T. Liao ◽  
L.J. Yang ◽  
X.P. Wu ◽  
X.Z. Du ◽  
Y.P. Yang

Author(s):  
John S. Maulbetsch

Water use by power plant cooling systems has become a critical siting issue for new plants and the object of increasing pressure for modification or retrofit at existing plants. Wet cooling typically costs less and results in more efficient plant performance. Dry cooling, while costing more and imposing heat rate and capacity penalties on the plant, conserves significant amounts of water and eliminates any concerns regarding thermal discharge to or intake losses on local water bodies. Hybrid cooling systems have the potential of combining the advantages of both systems by reducing, although not eliminating, water requirements while incurring performance penalties that are less than those from all-dry systems. The costs, while greater than those for wet cooling, can be less than those for dry. This paper addresses parallel wet/dry systems combining direct dry cooling using a forced-draft air-cooled condenser (ACC) with closed-cycle wet cooling using a surface (shell-and-tube) steam condenser and a mechanical-draft, counterflow wet cooling tower as applied to coal-fired steam plants, gas-fired combined-cycle plants and nuclear plants. A brief summary of criteria used to identify situations where hybrid systems should be considered is given. A methodology for specifying and selecting a hybrid system is described along with the information and data requirements for sizing and estimating the capital costs and water requirements a specified plant at a specified site. The methodology incorporates critical plant and operating parameters into the analysis, such as plant monthly load profile, plant equipment design parameters for equipment related to the cooling system, e.g. steam turbine, condenser, wet or dry cooling system, wastewater treatment system. Site characteristics include a water budget or constraints, e.g. acre feet of water available for cooling on an annual basis as well as any monthly or seasonal “draw rate” constraints and meteorological data. The effect of economic parameters including cost of capital, power, water and chemicals for wastewater treating are reviewed. Finally some examples of selected systems at sites of varying meteorological characteristics are presented.


Author(s):  
Abdul Ahad Iqbal ◽  
Ali Al-Alili

Abstract The performance of air conditioning systems is highly dependent on the environmental conditions of the high pressure side, where heat is rejected to the environment. Air conditioning systems utilize dry cooling systems which often don’t provide adequate cooling during peak cooling periods, or wet cooling systems which consume a lot of water. In this study, a novel hybrid cooling system that can provide both wet and dry cooling was modelled in TRNSYS, and used to provide cooling to closed sorption air conditioning systems. The performance of these systems with the hybrid cooling system was compared to the performance of a standard vapor compression cooling system being cooled by a dry cooling system. The COPsol of the vapor compression cooling system exhibited a decrease of almost 26% during the summer period, whereas the COPsol of the sorption systems increased by around 30%. Similarly, the cooling capacity of the vapor compression cooling system dropped by almost 5%, and for the sorption systems, it increased by around 20% during the summer period.


Author(s):  
R. W. Card

A hybrid wet-dry cooling system can be designed for a large combined-cycle power plant. A well-designed hybrid cooling system will provide reasonable net generation year-round, while using substantially less water than a conventional wet cooling tower. The optimum design for the hybrid system depends upon climate at the site, the price of power, and the price of water. These factors vary on a seasonal basis. Two hypothetical power plants are modeled, using state-of-the-art steam turbines and hybrid cooling systems. The plants are designed for water-constrained sites incorporating typical weather data, power prices, and water prices. The principles for economic designs of hybrid cooling systems are demonstrated.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3179
Author(s):  
Wenhui Huang ◽  
Lei Chen ◽  
Weijia Wang ◽  
Lijun Yang ◽  
Xiaoze Du

Axial flow fans play key roles in the thermo-flow performance of direct dry cooling system under windy conditions, so the energy efficiency of a power generating unit can be improved by optimizing the operation strategies of the axial flow fans. In this work, various measures based on the partition adjustment of axial flow fans with constant power consumption of a 2 × 660 MW power plant are studied by computational fluid dynamics (CFD) methods. The results show that increasing the rotational speed of the windward fans is beneficial to reduce the inlet air temperature and increase the mass flow rates of the fans, which enhance the heat rejections of the air-cooled condensers, especially at high wind speeds. Moreover, the turbine back pressures for the optimal and original cases are achieved by iterative methods, with the largest drop of 2.77 kPa at the wind speed of 12 m/s for 110-case 3 in the wind direction of −90°. It is recommended to adopt 110-case 1 and 110-case 3 at low and high wind speeds, respectively, in the wind directions of 90° and −90°, while 110-case 2 is always the best choice in the 0° wind direction.


Sign in / Sign up

Export Citation Format

Share Document