scholarly journals Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3030
Author(s):  
Simon Liebermann ◽  
Jung-Sup Um ◽  
YoungSeok Hwang ◽  
Stephan Schlüter

Due to the globally increasing share of renewable energy sources like wind and solar power, precise forecasts for weather data are becoming more and more important. To compute such forecasts numerous authors apply neural networks (NN), whereby models became ever more complex recently. Using solar irradiation as an example, we verify if this additional complexity is required in terms of forecasting precision. Different NN models, namely the long-short term (LSTM) neural network, a convolutional neural network (CNN), and combinations of both are benchmarked against each other. The naive forecast is included as a baseline. Various locations across Europe are tested to analyze the models’ performance under different climate conditions. Forecasts up to 24 h in advance are generated and compared using different goodness of fit (GoF) measures. Besides, errors are analyzed in the time domain. As expected, the error of all models increases with rising forecasting horizon. Over all test stations it shows that combining an LSTM network with a CNN yields the best performance. However, regarding the chosen GoF measures, differences to the alternative approaches are fairly small. The hybrid model’s advantage lies not in the improved GoF but in its versatility: contrary to an LSTM or a CNN, it produces good results under all tested weather conditions.

2020 ◽  
Vol 10 (8) ◽  
pp. 2962
Author(s):  
Lijuan Liu ◽  
Rung-Ching Chen ◽  
Shunzhi Zhu

Metro systems play a key role in meeting urban transport demands in large cities. The close relationship between historical weather conditions and the corresponding passenger flow has been widely analyzed by researchers. However, few studies have explored the issue of how to use historical weather data to make passenger flow forecasting more accurate. To this end, an hourly metro passenger flow forecasting model using a deep long short-term memory neural network (LSTM_NN) was developed. The optimized traditional input variables, including the different temporal data and historical passenger flow data, were combined with weather variables for data modeling. A comprehensive analysis of the weather impacts on short-term metro passenger flow forecasting is discussed in this paper. The experimental results confirm that weather variables have a significant effect on passenger flow forecasting. It is interesting to find out that the previous variables of one-hour temperature and wind speed are the two most important weather variables to obtain more accurate forecasting results on rainy days at Taipei Main Station, which is a primary interchange station in Taipei. Compared to the four widely used algorithms, the deep LSTM_NN is an extremely powerful method, which has the capability of making more accurate forecasts when suitable weather variables are included.


Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1804
Author(s):  
Wentai Lei ◽  
Jiabin Luo ◽  
Feifei Hou ◽  
Long Xu ◽  
Ruiqing Wang ◽  
...  

Ground penetrating radar (GPR), as a non-invasive instrument, has been widely used in the civil field. The interpretation of GPR data plays a vital role in underground infrastructures to transfer raw data to the interested information, such as diameter. However, the diameter identification of objects in GPR B-scans is a tedious and labor-intensive task, which limits the further application in the field environment. The paper proposes a deep learning-based scheme to solve the issue. First, an adaptive target region detection (ATRD) algorithm is proposed to extract the regions from B-scans that contain hyperbolic signatures. Then, a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework is developed that integrates Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network to extract hyperbola region features. It transfers the task of diameter identification into a task of hyperbola region classification. Experimental results conducted on both simulated and field datasets demonstrate that the proposed scheme has a promising performance for diameter identification. The CNN-LSTM framework achieves an accuracy of 99.5% on simulated datasets and 92.5% on field datasets.


Forecasting ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 488-504
Author(s):  
Alessandro Niccolai ◽  
Alfredo Nespoli

Very-short-term photovoltaic power forecast, namely nowcasting, is gaining increasing attention to face grid stability issues and to optimize microgrid energy management systems in the presence of large penetration of renewable energy sources. In order to identify local phenomena as sharp ramps in photovoltaic production, whole sky images can be used effectively. The first step in the implementation of new and effective nowcasting algorithms is the identification of Sun positions. In this paper, three different techniques (solar angle-based, image processing-based, and neural network-based techniques) are proposed, described, and compared. These techniques are tested on real images obtained with a camera installed at SolarTechLab at Politecnico di Milano, Milan, Italy. Finally, the three techniques are compared by introducing some performance parameters aiming to evaluate of their reliability, accuracy, and computational effort. The neural network-based technique obtains the best performance: in fact, this method is able to identify accurately the Sun position and to estimate it when the Sun is covered by clouds.


2008 ◽  
Vol 53 (No. 10) ◽  
pp. 421-429 ◽  
Author(s):  
K. Klem ◽  
M. Váňová ◽  
J. Hajšlová ◽  
K. Lancová ◽  
M. Sehnalová

Deoxynivalenol (DON) is the most prevalent Fusarium toxin in Czech wheat samples and therefore forecasting this mycotoxin is a potentially useful tool to prevent it from entering into food chain. The data about DON content in wheat grain, weather conditions during the growing season and cultivation practices from two field experiments conducted in 2002–2005 were used for the development of neural network model designed for DON content prediction. The winning neural network is based on five input variables: a categorial variable – preceding crop, and continuous variables – average April temperature, sum of April precipitation, average temperature 5 days prior to anthesis, sum of precipitation 5 days prior to anthesis. The most important input parameters are the preceding crop and sum of precipitation 5 days prior to anthesis. The weather conditions in April, which are important for inoculum formation on crop debris are also of important contribution to the model. The weather conditions during May and 5 days after anthesis play only an insignificant role for the DON content in grain. The effect of soil cultivation was found inferior for model function as well. The correlation between observed and predicted data using the neural network model reached the coefficient <i>R</i><sup>2</sup> = 0.87.


Author(s):  
Sawsan Morkos Gharghory

An enhanced architecture of recurrent neural network based on Long Short-Term Memory (LSTM) is suggested in this paper for predicting the microclimate inside the greenhouse through its time series data. The microclimate inside the greenhouse largely affected by the external weather variations and it has a great impact on the greenhouse crops and its production. Therefore, it is a massive importance to predict the microclimate inside greenhouse as a preceding stage for accurate design of a control system that could fulfill the requirements of suitable environment for the plants and crop managing. The LSTM network is trained and tested by the temperatures and relative humidity data measured inside the greenhouse utilizing the mathematical greenhouse model with the outside weather data over 27 days. To evaluate the prediction accuracy of the suggested LSTM network, different measurements, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), are calculated and compared to those of conventional networks in references. The simulation results of LSTM network for forecasting the temperature and relative humidity inside greenhouse outperform over those of the traditional methods. The prediction results of temperature and humidity inside greenhouse in terms of RMSE approximately are 0.16 and 0.62 and in terms of MAE are 0.11 and 0.4, respectively, for both of them.


2021 ◽  
Vol 11 (15) ◽  
pp. 6824
Author(s):  
Jin-Su Kim ◽  
Min-Gu Kim ◽  
Sung-Bum Pan

Electromyogram (EMG) signals cannot be forged and have the advantage of being able to change the registered data as they are characterized by the waveform, which varies depending on the gesture. In this paper, a two-step biometrics method was proposed using EMG signals based on a convolutional neural network–long short-term memory (CNN-LSTM) network. After preprocessing of the EMG signals, the time domain features and LSTM network were used to examine whether the gesture matched, and single biometrics was performed if the gesture matched. In single biometrics, EMG signals were converted into a two-dimensional spectrogram, and training and classification were performed through the CNN-LSTM network. Data fusion of the gesture recognition and single biometrics was performed in the form of an AND. The experiment used Ninapro EMG signal data as the proposed two-step biometrics method, and the results showed 83.91% gesture recognition performance and 99.17% single biometrics performance. In addition, the false acceptance rate (FAR) was observed to have been reduced by 64.7% through data fusion.


Author(s):  
Klent Gomez Abistado ◽  
◽  
Catherine N. Arellano ◽  
Elmer A. Maravillas ◽  

This paper presents a scheme of weather forecasting using artificial neural network (ANN) and Bayesian network. The study focuses on the data representing central Cebu weather conditions. The parameters used in this study are as follows: mean dew point, minimum temperature, maximum temperature, mean temperature, mean relative humidity, rainfall, average wind speed, prevailing wind direction, and mean cloudiness. The weather data were collected from the PAG-ASA Mactan-Cebu Station located at latitude: 10°19´, longitude: 123°59´ starting from January 2011 to December 2011 and the values available represent daily averages. These data were used for training the multi-layered backpropagation ANN in predicting the weather conditions of the succeeding days. Some outputs from the ANN, such as the humidity, temperature, and amount of rainfall, are fed to the Bayesian network for statistical analysis to forecast the probability of rain. Experiments show that the system achieved 93%–100% accuracy in forecasting weather conditions.


2019 ◽  
Vol 8 (4) ◽  
pp. 9924-9927

Audio event identification is an emerging research topic to augment the automation of audio tagging, context-based audio event retrieval, audio surveillance and much more. In this research work, audio event classification for cricket commentary is done by using long short term memory (LSTM) neural network. Mel-frequency cepstral coefficients (MFCC) features are extracted from the audio commentary and trained with LSTM neural network. The trained LSTM network is validated and attained an accuracy of 95%.


Sign in / Sign up

Export Citation Format

Share Document