scholarly journals Analysis of the Performance of a Passive Downdraught Evaporative Cooling System Driven by Solar Chimneys in a Residential Building by Using an Experimentally Validated TRNSYS Model

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3486
Author(s):  
Andrés Soto ◽  
Pedro Martínez ◽  
Victor M. Soto ◽  
Pedro J. Martínez

Natural ventilation, combined with a passive cooling system, can provide significant energy savings in the refrigeration of indoor spaces. The performance of these systems is highly dependent on outdoor climatic conditions. The objective of this study was to analyse the feasibility of a passive, downdraught, evaporative cooling system driven by solar chimneys in different climatic zones by using an experimentally validated simulation tool. This tool combined a ventilation model and a thermal model of the dwelling in which an empirical model of a direct evaporative system made of plastic mesh was implemented. For experimental validation of the combined model, sensors were installed in the dwelling and calibrated in the laboratory. The combined model was applied to Spanish and European cities with different climates. In the simulation, values of cooling energy per volume of air ranging between 0.53 Wh/m3 and 0.79 Wh/m3 were obtained for Alicante (hot climate with moderate humidity) and Madrid (hot and dry climate), respectively. In these locations, medium and high applicability was obtained, respectively, in comparison with Burgos (cold climate with moderate humidity) and Bilbao (cold and humid climate), which were low. The evaluation of the reference building in each location allowed establishing a classification in terms of performance, comfort and applicability for each climate.

Author(s):  
Amir Abbas Zadpoor ◽  
Ali Asadi Nikooyan

The evaporative inlet cooling systems used for inlet cooling of gas turbines during hot summers do not work well in humid areas. However, desiccant wheels can be used to dehumidify the air before passing it trough the evaporative cooler. Since the desiccant wheels work adiabatically, the resulting air is hotter than the air introduced to the wheel and an evaporative cooling system is used to cool down the dehumidified air. Combined direct and indirect evaporative coolers have been already used to investigate the effects of dehumidification on the effectiveness of the evaporation cooling systems. It is shown that a single desiccant wheel does not offer much higher effectiveness compared to the multiple-stage evaporative systems. In this paper, an improved version of the desiccant inlet cooling system is presented. Additional dehumidification and indirect evaporative cooling stages are added to increase the effectiveness of the inlet cooling. A typical gas turbine cycle along with an industrial gas turbine with actual performance curves are used to simulate the thermal cycle in presence of the different inlet cooling systems. The simulations are carried out for three different climatic conditions. The improved and original desiccant-based systems are compared and it is shown that the added stages substantially improve the effectiveness of the desiccant-based inlet cooling.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093499
Author(s):  
Shafqat Hussain ◽  
Abdulrahim Kalendar ◽  
Muhammad Zeeshan Rafique ◽  
Patrick Oosthuizen

This article presents numerical investigations of the solar-assisted hybrid desiccant evaporative cooling system integrated with standard air collectors for applications under the hot and humid climatic conditions of Kuwait city. The objective is to introduce the energy-efficient and carbon-free solar-assisted hybrid desiccant evaporative cooling system to alleviate the principal problems of electricity consumption and carbon emissions resulting from the use of the conventional vapor-compression cooling systems. In the normal building, during cooling load operation, the solar-assisted hybrid desiccant evaporative cooling system can cope with the cooling load particularly sensible by evaporative cooling and latent through desiccant dehumidification. The outcomes of this work indicate that solar-assisted hybrid desiccant evaporative cooling device integrated with air collectors is capable of providing average coefficient of performance of 0.85 and has the potential to provide cooling with energy saving when compared with conventional vapor-compression refrigeration systems. It was concluded that under the intense outdoor environmental conditions (ambient air at greater than 45°C and 60% relative humidity), the delivered supply air from the evaporative cooling was nearly at 27°C and 65% relative humidity. To solve this problem, the system was assisted with conventional cooling coil (evaporator of heat pump) to supply air at comfortable conditions in the conditioned space.


Energy ◽  
2017 ◽  
Vol 123 ◽  
pp. 432-444 ◽  
Author(s):  
Hye-Won Dong ◽  
Sung-Joon Lee ◽  
Dong-Seob Yoon ◽  
Joon-Young Park ◽  
Jae-Weon Jeong

2021 ◽  
Vol 46 (3) ◽  
pp. 1-22
Author(s):  
C.E. Ikechukwu-Edeh ◽  
M.C. Ndukwu ◽  
I.E. Ahaneku

Greenhouses simulate the "desired" environment for successful growth and development of plants. They, by design, achieve this desired environment by supplying the necessary climatic inputs needed by the plants to strive and at the same time exclude factors impeding the growth of plants, hence it is called a controlled environment. One of the common and most desired attribute of the greenhouse is its ability to provide effective cooling to the plants. This paper reviewed, extensively, the concept of evaporative cooling as applied in greenhouses. Factors like Vapor Pressure deficit (VPD), Relative Humidity, Ambient Temperature were also discussed with regards to its effects on the efficiency of the evaporative cooling system. The efficiencies of the Fan and Pad System and the Fog systems were reviewed and compared with their consequent dependence on factors like nozzle spacing, nozzle length, saturation efficiency of pad material etc. The Natural Ventilation method was also reviewed as a "stand alone " greenhouse cooling method and as an augmentation to other cooling systems. Factors like rate of air exchange, total area of vents, wind speed, vent opening angles etc. were also discussed in line with their effects on the effectiveness of the Natural ventilation method. The Nigerian Perspective on Greenhouses and its Cooling methods was also discussed with reference to local development of evaporative coolers as well as its importation, its affordability, management, availability and appliance to the Nigerian farming culture.


Sign in / Sign up

Export Citation Format

Share Document