scholarly journals Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3536
Author(s):  
Abraham Castro Garcia ◽  
Shuo Cheng ◽  
Jeffrey S. Cross

In order to reduce global greenhouse gas emissions, renewable energy technologies such as wind power and solar photovoltaic power systems have recently become more widespread. However, Japan as a nation faces high reliance on imported fossil fuels for electricity generation despite having great potential for further renewable energy development. The focus of this study examines untapped geographical locations in Japan’s northern most prefecture, Hokkaido, that possess large wind power potential. The possibility of exploiting this potential for the purpose of producing green hydrogen is explored. In particular, its integration with a year-round conversion of Kraft lignin into bio-oil from nearby paper pulp mills through a near critical water depolymerization process is examined. The proposed bio-oil and aromatic chemical production, as well as the process’ economics are calculated based upon the total available Kraft lignin in Hokkaido, including the magnitude of wind power capacity that would be required for producing the necessary hydrogen for such a large-scale process. Green hydrogen integration with other processes in Japan and in other regions is also discussed. Finally, the potential benefits and challenges are outlined from an energy policy point-of-view.

2013 ◽  
Vol 860-863 ◽  
pp. 2088-2094 ◽  
Author(s):  
Pan Yu Fang ◽  
Xue Feng Fan ◽  
Jie Ren ◽  
Yi Xia ◽  
De Zhi Chen ◽  
...  

Close attention has been paid to the power generation using renewable energy such as the widespread energy and solar energy. After the integration of large-scale renewable energy, more uncertain factors are brought to the power system, which badly influences systems planning and operation. The wind power, photovoltaic power and load are random but correlative, therefore, it is more logical to study the influence exerted by the integration of renewable energy when considering the uncertainty and it is meaningful to the power systems planning and operation. Based on the summary and survey of previous studies, the technical route of power system analysis concerning the correlation of wind power, photovoltaic power and load is proposed in this paper and some key technologies are discussed. The study of correlation offers valuable analysis and recommendations to the connection of large-scale wind and solar power base.


2016 ◽  
Vol 27 (3) ◽  
pp. 246-258 ◽  
Author(s):  
Anestis Anastasiadis ◽  
Georgios Kondylis ◽  
Georgios A Vokas ◽  
Panagiotis Papageorgas

Purpose – The purpose of this paper is to examine the feasibility of an ideal power network that combines many different renewable energy technologies such as wind power, concentrated solar power (CSP) and hydroelectric power. This paper emphasizes in finding the benefits arising from hydrothermal coordination compared to the non-regulated integration of the hydroelectric units, as well as the benefits from the integration of wind power and CSP. Design/methodology/approach – Artificial Neural Networks were used to estimate wind power output. As for the CSP system, a three-tier architecture which includes a solar field, a transmission-storage system and a production unit was used. Each one of those separate sections is analyzed and the process is modeled. As for the hydroelectric plant, the knowledge of the water’s flow rated has helped estimating the power output, taking into account the technical restrictions and losses during transmission. Also, the economic dispatch problem was solved by using artificial intelligence methods. Findings – Hydrothermal coordination leads to greater thermal participation reduction and cost reduction than a non-regulated integration of the hydrothermal unit. The latter is independent from the degree of integration of the other renewable sources (wind power, CSP). Originality/value – Hydrothermal coordination in a power system which includes thermal units and CSP for cost and emissions reduction.


2015 ◽  
Vol 735 ◽  
pp. 331-335
Author(s):  
Naila Zareen ◽  
Mohd Wazir Mustafa ◽  
Azriyenni

Environment deterioration, energy shortage and ever rising fuel price makes green transportation a necessity. Being an alternative to fossil fuels vehicles, Electric Vehicles (EVs) exemplify the most popular approach of electrification to a substantial portion of the transportation sector. Recently, usage of renewable energy resources (RERs) is also increased because of its economic and environmental concerns over traditional resources in the new electric power systems. Variable reliability aspects of RERs increase the complexity of safe and stable operation of grid. Therefore, EV will further increase this uncertainty and variability when being connected randomly to the grid in large scale. This paper not only highlights the EV’s related challenges/issues and presents a brief comprehensive review of recent researches. But, also demonstrates a simulation methodology for analyzing the impact of EVs under various charging scenarios on an independent distribution grid in presence of RERs. The results show the creation of new peak loads which in some cases may exceed the grid capacity and threaten the stability and reliability.


2014 ◽  
Vol 2014 (10) ◽  
pp. 538-545 ◽  
Author(s):  
Abdul Basit ◽  
Anca Daniela Hansen ◽  
Mufit Altin ◽  
Poul Sørensen ◽  
Mette Gamst

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2301
Author(s):  
Yun-Sung Cho ◽  
Yun-Hyuk Choi

This paper describes a methodology for implementing the state estimation and enhancing the accuracy in large-scale power systems that partially depend on variable renewable energy resources. To determine the actual states of electricity grids, including those of wind and solar power systems, the proposed state estimation method adopts a fast-decoupled weighted least square approach based on the architecture of application common database. Renewable energy modeling is considered on the basis of the point of data acquisition, the type of renewable energy, and the voltage level of the bus-connected renewable energy. Moreover, the proposed algorithm performs accurate bad data processing using inner and outer functions. The inner function is applied to the largest normalized residue method to process the bad data detection, identification and adjustment. While the outer function is analyzed whether the identified bad measurements exceed the condition of Kirchhoff’s current law. In addition, to decrease the topology and measurement errors associated with transformers, a connectivity model is proposed for transformers that use switching devices, and a transformer error processing technique is proposed using a simple heuristic method. To verify the performance of the proposed methodology, we performed comprehensive tests based on a modified IEEE 18-bus test system and a large-scale power system that utilizes renewable energy.


2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


2014 ◽  
Vol 526 ◽  
pp. 211-216
Author(s):  
Qiong Ying Lv ◽  
Yu Shi Mei ◽  
Xi Jia Tao

As the trend of large-scale wind Power, People pay more attention to wind energy, which as a clean, renewable energy. Traditional unarmed climbing and crane lifting has been unable to meet the requirements of the equipment maintenance. Magnetic climb car can automatically crawl along the wall of the steel tower, the maintenance equipment and personnel can be sent to any height of the tower. The quality of the magnetic wall-climbing car is 550kg, which can carry 1.3 tons load. In this paper completed the magnetic wall-climbing car design and modeling, mechanical analysis in static and dynamic, obtained with the air gap and Magnetic Force curves. The application shows that the magnetic wall-climbing car meets the reliable adsorption, heavy-duty operation, simple operation etc..


2021 ◽  
Vol 54 (1) ◽  
pp. 147-154
Author(s):  
Issam Griche ◽  
Sabir Messalti ◽  
Kamel Saoudi

The uncertainty of wind power brings great challenges to large-scale wind power integration. The conventional integration of wind power is difficult to adapt the demand of power grid planning and operation. This paper proposes an instantaneous power control strategy for voltage improvement in power networks using wind turbine improving the dynamical response of power systems performances (voltage and transient stability) after fault. In which the proposed control algorithm based on a new advanced control strategy to control the injected wind power into power system. The efficiency of developed control strategy has been tested using IEEE 9 Bus. Simulation results have showed that the proposed method perform better to preserve optimal performances over wide range of disturbances for both considered scenarios studied short circuit and variable loads.


Sign in / Sign up

Export Citation Format

Share Document