force curves
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Юлия Васильевна Кузнецова

Предложена методика, оптимизирующая метод контактной силовой спектроскопии. С помощью макроязыка, интегрированного в программное обеспечение NOVA установки сканирующего зондового микроскопа Solver P47, был разработан алгоритм, позволяющий анализировать силовые кривые, не покидая его основного интерфейса. Апробация метода выполнена на образцах синтезированного полимера, поскольку одним из важнейших механических свойств, определяющим их спектр областей применения, является упругость. В работе получены локальные значения модуля Юнга на поверхности полимера методом контактной силовой спектроскопии с применением скрипта YUNG, разработанного с помощью макроязыка, интегрированного в программу управления сканирующего зондового микроскопа. Показано, что применение скрипта YUNG позволяет оптимизировать метод контактной силовой спектроскопии по поиску показателя степени γ, выбору модели для расчета силы взаимодействия для дальнейшего определения локального модуля Юнга. We propose a technique that optimizing the method of contact force spectroscopy. With the help of a macro language integrated into the NOVA software of the Solver P47 scanning probe microscope, an algorithm was developed that allows analyzing force curves without leaving its main interface. The approbation of the method was done on samples of synthesized polymer, since one of the most important mechanical properties determining their range of applications is elasticity. In this paper, local values of the Young's modulus on the polymer surface are obtained by the method of contact force spectroscopy using the YUNG script developed using a macro language integrated into the control program of a scanning probe microscope. It is shown that the use of the YUNG script makes it possible to optimize the method of contact force spectroscopy by searching for the exponent γ, choosing a model for calculating the interaction force for further determination of the local Young modulus.


2021 ◽  
Author(s):  
Tomonori Nakamura ◽  
Shun Omagari ◽  
Xiaobin Liang ◽  
Ken Nakajima ◽  
Martin Vacha

Abstract Molecular aggregates were discovered in 1930’s, yet, the forces and excitonic coupling energy associated with the aggregate formation have not been detected so far. We directly measure such force and energy on single chains of the conjugated polymer polyfluorene using atomic force and fluorescence microscopes. The polyfluorene chain is attached on either side to a substrate and an AFM tip, respectively, and mechanically stretched under intense laser irradiation. The force – extension curves show force peaks that are attributed to gradual unfolding of the chain. Upon the irradiation, neighboring conjugated segments interact via excitonic coupling when in contact and experience an attractive force which is detected by the AFM. Analysis of the force curves provides excitonic coupling energy which is of same order as theoretically calculated values for a face-to-face fluorene dimer, and in agreement with the energy obtained from single-chain fluorescence spectra. Apart from contributing an essential piece of knowledge in the field of molecular photophysics, the work demonstrates on molecular scale a novel energy conversion mechanism from light to mechanical energy which could be potentially used, e.g., as a driving mechanism for molecular motors.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Qing Wang ◽  
Nan Hu ◽  
Junbo Duan

Atomic force microscopy (AFM) is a high-resolution scanning technology, and the measured data are a set of force curves, which can be fitted with a piecewise curve model and be analyzed further. Most methods usually follow a two-step strategy: first, the discontinuities (or breakpoints) are detected as the boundaries of two consecutive pieces; second, each piece separated by the discontinuities is fitted with a parametric model, such as the well-known worm-like chain (WLC) model. The disadvantage of this method is that the fitting (the second step) accuracy depends largely on the discontinuity detection (the first step) accuracy. In this study, a sparse representation model is proposed to jointly detect discontinuities and fit curves. The proposed model fits the curve with a linear combination of parametric functions, and the estimation of the parameters in the model can be formulated as an optimization problem with ℓ 0 -norm constraint. The performance of the proposed model is demonstrated by the fitting of AFM retraction force curves with the WLC model. Results shows that the proposed method can segment the force curve and estimate the parameter jointly with better accuracy, and hence, it is promising for automatic AFM force curve processing.


Biology Open ◽  
2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Adam D. Sylvester ◽  
Steven G. Lautzenheiser ◽  
Patricia Ann Kramer

ABSTRACT Reconstructing the locomotor behavior of extinct animals depends on elucidating the principles that link behavior, function, and morphology, which can only be done using extant animals. Within the human lineage, the evolution of bipedalism represents a critical transition, and evaluating fossil hominins depends on understanding the relationship between lower limb forces and skeletal morphology in living humans. As a step toward that goal, here we use a musculoskeletal model to estimate forces in the lower limb muscles of ten individuals during walking. The purpose is to quantify the consistency, timing, and magnitude of these muscle forces during the stance phase of walking. We find that muscles which act to support or propel the body during walking demonstrate the greatest force magnitudes as well as the highest consistency in the shape of force curves among individuals. Muscles that generate moments in the same direction as, or orthogonal to, the ground reaction force show lower forces of greater variability. These data can be used to define the envelope of load cases that need to be examined in order to understand human lower limb skeletal load bearing.


2021 ◽  
Author(s):  
Mohammed Islam ◽  
Dong Cheol Seo ◽  
Wayne Raman-Nair

Abstract The applications of a Smoothed Particle Hydrodynamics (SPH)-based, a Finite Volume Method (FVM)-based and a Boundary Element Method (BEM)-based tools to investigate the nonlinear interactions between large waves and a submerged horizontal circular structure and to some extent a rectangular cylinder at various submergence depths in deep water conditions are presented. The main aim is to validate the Lagrangian technique based SPH tool to predict the wave-structure interaction forces under large waves. The features of typical force curves in a wave cycle, the magnitude of wave forces, and the influence of relative axis depth of the structure in deep water conditions are investigated, primarily using an open-sourced SPH tool. Simulations were carried out in 2D with one deepwater wave at multiple submergence depths. The water surface elevations are predicted at different near- and far-field locations. The time-averaged mean and the average amplitude of the horizontal and vertical forces acting on the cylindrical model at various submergence depths are plotted and then physically interpreted. The wave forces and surface elevations are compared with the available published experimental studies and CFD (both FVM and BEM) predictions. Good agreement between the SPH predictions and the measurements was obtained for the submerged body’s surface elevation and hydrodynamic forces at all submergence depths. The FVM tends to overestimate the wave forces compared to the SPH predictions and the measurements, particularly for the shallowly submerged structure when extreme wave breaking occurs. The BEM predictions are reasonable for the non-wave breaking cases.


2021 ◽  
Vol 7 (4) ◽  
pp. 41357-41367
Author(s):  
Marta Duarte da Fonseca De Albuquerque ◽  
Elaynne Rohem Peçanha ◽  
Renata Antoun Simão ◽  
Laurindo de Salles Leal Filho ◽  
Marisa Bezerra de Mello Monte

2021 ◽  
Vol 12 ◽  
pp. 58-71
Author(s):  
Dorothee Silbernagl ◽  
Media Ghasem Zadeh Khorasani ◽  
Natalia Cano Murillo ◽  
Anna Maria Elert ◽  
Heinz Sturm

A key application of atomic force microscopy (AFM) is the measurement of physical properties at sub-micrometer resolution. Methods such as force–distance curves (FDCs) or dynamic variants (such as intermodulation AFM (ImAFM)) are able to measure mechanical properties (such as the local stiffness, k r) of nanoscopic heterogeneous materials. For a complete structure–property correlation, these mechanical measurements are considered to lack the ability to identify the chemical structure of the materials. In this study, the measured attractive force, F attr, acting between the AFM tip and the sample is shown to be an independent measurement for the local chemical composition and hence a complete structure–property correlation can be obtained. A proof of concept is provided by two model samples comprised of (1) epoxy/polycarbonate and (2) epoxy/boehmite. The preparation of the model samples allowed for the assignment of material phases based on AFM topography. Additional chemical characterization on the nanoscale is performed by an AFM/infrared-spectroscopy hybrid method. Mechanical properties (k r) and attractive forces (F attr) are calculated and a structure–property correlation is obtained by a manual principle component analysis (mPCA) from a k r/F attr diagram. A third sample comprised of (3) epoxy/polycarbonate/boehmite is measured by ImAFM. The measurement of a 2 × 2 µm cross section yields 128 × 128 force curves which are successfully evaluated by a k r/F attr diagram and the nanoscopic heterogeneity of the sample is determined.


Sign in / Sign up

Export Citation Format

Share Document