scholarly journals Optimal Air Conditioner Placement Using a Simple Thermal Environment Analysis Method for Continuous Large Spaces with Predominant Advection

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4663
Author(s):  
Tatsuhiro Yamamoto ◽  
Akihito Ozaki ◽  
Myonghyang Lee

The number of houses with large, continuous spaces has increased recently. With improvements in insulation performance, it has become possible to efficiently air condition such spaces using a single air conditioner. However, the air conditioning efficiency depends on the placement of the air conditioner. The only way to determine the optimal placement of such air conditioners is to conduct an experiment or use computational fluid dynamic analysis. However, because the analysis is performed over a limited period, it is difficult to consider non-stationarity effects without using an energy simulation. Therefore, in this study, energy simulations and computational fluid dynamics analyses were coupled to develop a thermal environment analysis method that considers non-stationarity effects, and various air conditioner arrangements were investigated to demonstrate the applicability of the proposed method. The accuracy verification results generally followed the experimental results. A case study was conducted using the calculated boundary conditions, and the results showed that the placement of two air conditioners in the target experimental house could provide sufficient air conditioning during both winter and summer. Our results suggest that this method can be used to conduct preliminary studies if the necessary data are available during design or if an experimental house is used.

Author(s):  
Wufeng Jin ◽  
Cheng Wang ◽  
Yuebo Jiang ◽  
Liyue Ren ◽  
Bongsoo Choi ◽  
...  

In residential air conditioning systems, outdoor units are often installed in the recesses of building facades and shaded by louvres; however, different unit installation positions and louvre blade angles affect the thermal environment around the outdoor unit and the energy efficiency ratio (EER) of the air conditioner. In this study, the effects of the outdoor unit installation position and louvre blade angle on the EER when a single outdoor unit was installed in a recess were investigated by experiments on a 1.5 hp air conditioner (rated power of the air conditioner is 3.5 kW), and the influence of the spacing and angle between two outdoor units on the air conditioner EER when two outdoor units were installed in the same recess was explored. The results of the research indicate that when a single outdoor unit is installed in the recess, the EER increases with an increase in the distance between the inlet of the outdoor unit and the wall. To meet the three-level standard of air conditioner EERs, the distance between the inlet and wall needs to be greater than 300 mm. The EER first increased and then decreased slowly with the increase in the distance between the outdoor unit outlet and louvre; thus, the distance between the outlet and louvre should not be less than 300 mm. The EER first increased and then decreased with the increase in the blade angle, and thus, the blade angle should not be greater than 20°. When two outdoor units are installed in the same recess, each installation mode, “horizontal installation” (same height and collinear), “perpendicular installation” (same height and perpendicular), “angle installation” (same height and obtuse angle), and “up and down parallel installation” (different heights and parallel), has an optimum installation distance and angle.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Carlos R. de Nardin ◽  
Felipe T. Fernandes ◽  
Adriano J. Longo ◽  
Luciano P. Lima ◽  
Felix A. Farret ◽  
...  

This paper presents a comparison of air conditioners using the conventional heating, ventilation, and air conditioning heat pumps and the one using solar heat stored underground, also known as shallow geothermal air conditioning. The proposed air conditioner with solar heat stored underground reunites practical data from an implementation of the heuristic perturb-and-observe (P&O) control and a heat management technique. The aim is to find out the best possible heat exchange between the room ambient and the underground soil heat to reduce its overall consumption without any heat pump. Comparative tests were conducted in two similar rooms, each one equipped with one of the two types of air conditioning. The room temperature with the conventional air conditioning was maintained as close as possible to the temperature of the test room with shallow geothermal conditioning to allow an acceptable data validation. The experiments made both in the winter of 2014 and in the summer of 2015 in Santa Maria, South Brazil, demonstrated that the conventional air conditioner consumed 19.08 kWh and the shallow geothermal conditioner (SGC) consumed only 4.65 kWh, therefore, representing a reduction of energy consumption of approximately 75%.


2019 ◽  
Vol 111 ◽  
pp. 06035
Author(s):  
Sihwan Lee

While air conditioner is running, opening doors and windows is a great way to reduce operating efficiency and undermine the air conditioning system’s ability to bring the indoor to a comfortable temperature. The purpose of this study is to evaluate the heat loss and thermal environment through the door open while air conditioner running. To achieve this goal, using full-scale measurement with the commercial store during the cooling period, the infiltration rate, thermal environment and energy consumption of air conditioners with door opened and door closed state were measured. The measured results show that the infiltration rate at the door opened state was increased by about 21.3 times compared to the door closed state. When the set temperature of the air conditioner was 24 °C, the room temperature in the opening gate cooling was measured to be about 5 °C higher than the closing gate cooling. However, the energy consumption was measured approximately 12 kWh/day and there was no difference with door state. This means that the energy consumption is not increased if the indoor air temperature would not reach the set point temperature of air conditioner.


2014 ◽  
Vol 699 ◽  
pp. 828-833 ◽  
Author(s):  
Sumeru ◽  
Markus ◽  
Farid Nasir Ani ◽  
Henry Nasution

Air conditioning system consumes approximately 50% of the total energy consumption of buildings. Split-type air conditioner is the most widely used in residential and commercial buildings. As a result, enhancement on the performance of the air conditioners will yield a significant energy savings. The use of ejector as an expansion device on the split-type air conditioners is one method to increase the system performance. Exergy analysis on a split-type air conditioner uses an ejector as an expansion device at room and outdoor temperatures of 24 °C and 34 °C, respectively, yielded the percentage of exergy reduction up to 40.6%. Also, the exergy losses on in the compressor had the highest impact on the performance improvement of the split-type air conditioner.


2019 ◽  
Vol 8 (2) ◽  
pp. 4533-4538

The primary aspect of any building design and management is heating, ventilation and air conditioning (HVAC). Such systems play very important role in building construction and then the comfort of the occupants of buildings. Hence proper design of such HVAC system is necessary and is essential for efficient and green buildings the HVAC equipment perform the duty of heating and/ or cooling for residential and commercial buildings. Such HVAC system also provide fresh outdoor air to dilute the air contaminants such as odor from occupants of buildings, volatile organic compounds , chemicals etc. Air conditioning equipment is one of the major components in HVAC system. In the project work, an effort has been made to analyses the HVAC system used in seminar halls of which have sitting capacity of 100 people. It is very much essential to have comfortless for people participating in events like seminar, conferences, commercial presentations in seminar hall. Good cooling of seminar hall is essential especially in summer season and moderate warmness is necessary in winter season. In sitting arrangements, the 10 chairs are arranged in 10 rows. The Computational Fluid Dynamic analysis of HVAC system available in seminar hall is carried out by using ANSYS FLUENT software both summer and winter seasons. Parameter studies have been carried out by varying inlet velocity of air in the range 0.1 to 0.5 m/s. the results have been presented in the form of velocity, pressure and temperature contours. As it is observed that as inlet air velocity increases from 0.1 to 0.5 m/s. the outlet temperature decreases from 307 to 302K.


Jurnal INFORM ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Rinabi Tanamal

Abstract— Air Conditioner (AC) is a system or machine designed to stabilize the air and air temperatures that cover a certain area. This study discusses how to find ways to improve Android-based system applications for air protection in Air Conditioning (AC), this method is used as a support in making decisions on damage to Air Conditioner (AC) on the main components, supporting components, electrical components and cooling materials (Refrigerant) in Air Conditioner (AC). To design the application, an expert system is needed. Expert system itself is a computer system that emulates the ability of human expertise (Sri Hartati and Sari Iswanti, 2008: 152). The purpose of this study is to be able to produce an expert system application that can help technicians to improve damage to the Air Conditioner (AC) so that users of Air Conditioning (AC) can also understand the damage that occurs in Air Conditioners (AC). The research inference method used in this expert system uses the Android-based Forward Chaining method. Forward Chaining is a strategy in finding data by collecting data or facts which will then be concluded to find the right solution or event to solve a problem. The shell expert system used is McGoo which will then be adopted into the Thunkable Android application. With the existence of this expert system aims to identify damage to the Air Conditioner (AC) and used as material in making decisions to help the users, especially the technicians in diagnosing the damage that is in the Air Conditioner (AC). The results of this study indicate that the existence of a hierarchy of decisions to detect damage to the Air Conditioner (AC) can be applied in the society and from the results of application testing it can be concluded that the application of this expert system will be a tool for users of Air Conditioners and technicians to diagnose damage to Air Conditioner (AC). 


2018 ◽  
Vol 931 ◽  
pp. 920-925
Author(s):  
Zohrab Melikyan ◽  
Naira Egnatosyan ◽  
Siranush Egnatosyan

Centralized air conditioning systems are widely used in buildings at present. In these conditioners, the outside air gets required temperature, humidity, purity, and other features, necessary for creating comfort microclimate in inside areas of houses, and by the help of fans and air ducts the processed air moves to all rooms of a building. As a result, the creation and maintenance of comfort conditions in buildings become complicated and expensive activity. From this point of view, it is becoming more expedient to install local air conditioners in each room instead of single central one for the whole building. For this reason new local air conditioner is developed.


Author(s):  
Sensuke Shimizu ◽  
Haruo Terasaka ◽  
Akira Yamada

The objective in this study is to evaluate thermal environment of a room with an advanced ceiling hidden type air-conditioner using numerical simulation. As the characteristic of the air-conditioner, it supplies a weak airflow from a large inlet to a room. Circulator fans are fixed on the ceiling. Numerical simulation is performed to a room with the air-conditioner. PMV [1] is calculated from the obtained data and thermal sensation of the people is investigated. From the PMV distribution, it was found that this sensation was improved by the advanced air-conditioner.


Sign in / Sign up

Export Citation Format

Share Document