scholarly journals Cost Benefit of Implementing Advanced Monitoring and Predictive Maintenance Strategies for Offshore Wind Farms

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4922
Author(s):  
Alan Turnbull ◽  
James Carroll

Advancements in wind turbine condition monitoring systems over the last decade have made it possible to optimise operational performance and reduce costs associated with component failure and other unplanned maintenance activities. While much research focuses on providing more automated and accurate fault diagnostics and prognostics in relation to predictive maintenance, efforts to quantify the impact of such strategies have to date been comparatively limited. Through time-based simulation of wind farm operation, this paper quantifies the cost benefits associated with predictive and condition-based maintenance strategies, taking into consideration both direct O&M costs and lost production. Predictive and condition-based strategies have been modelled by adjusting known component failure and repair rates associated with a more reactive approach to maintenance. Results indicate that up to 8% of direct O&M costs can be saved through early intervention along with up to 11% reduction in lost production, assuming 25% of major failures of the generator and gearbox can be diagnosed through advanced monitoring and repaired before major replacement is required. Condition-based approaches can offer further savings compared to predictive strategies by utilising more component life before replacement. However, if weighing up the risk between component failure and replacing a component too early, results suggest that it is more cost effective to intervene earlier if heavy lift vessels can be avoided, even if that means additional major repairs are required over the lifetime of the site.

2015 ◽  
Author(s):  
Thomas Nivet ◽  
Ema Muk-Pavic

Offshore wind energy is one of the most upcoming sources of energy, and it is already partially replacing the fossil fuelled power production. However, offshore wind turbine technology is also associated with harsher weather environment. Indeed, it experiences more challenging wind and wave conditions, which in turn limits the vessels capabilities to access the wind farms. Additionally, with the constant rise of power utilization, improvements in the Operation Maintenance (O&M) planning are crucial for the development of large isolated offshore wind farms. Improvements in the planning of the O&M for offshore wind farms could lead to considerable reduction in costs. For this reason, the interest of this research paper is the investigation of the most cost effective approach to offshore turbine maintenance strategies. This objective is achieved by implementing a simulation approach that includes a climate conditions analysis, an operation analysis, a failure evaluation and a simulation of the repairs. This paper points out how different O&M strategies can influence the sustainability of a wind farm.


2018 ◽  
Vol 77 (3) ◽  
pp. 1238-1246 ◽  
Author(s):  
Jean-Philippe Pezy ◽  
Aurore Raoux ◽  
Jean-Claude Dauvin

Abstract The French government is planning the construction of offshore wind farms (OWF) in the next decade (around 2900 MW). Following the European Environmental Impact Assessment Directive 85/337/EEC, several studies have been undertaken to identify the environmental conditions and ecosystem functioning at selected sites prior to OWF construction. However, these studies are generally focused on the conservation of some species and there is no holistic approach for analysing the effects arising from OWF construction and operation. The objective of this article is to promote a sampling strategy to collect data on the different ecosystem compartments of the future Dieppe-Le Tréport (DLT) wind farm site, adopting an ecosystem approach, which could be applied to other OWFs for the implementation of a trophic network analysis. For that purpose, an Ecopath model is used here to derive indices from Ecological Network Analysis (ENA) to investigate the ecosystem structure and functioning. The results show that the ecosystem is most likely detritus-based, associated with a biomass dominated by bivalves, which could act as a dead end for a classic trophic food web since their consumption by top predators is low in comparison to their biomass. The systemic approach developed for DLT OWF site should be applied for other French and European installations of Offshore Wind Farm.


2012 ◽  
Vol 9 (74) ◽  
pp. 2120-2130 ◽  
Author(s):  
Elizabeth A. Masden ◽  
Richard Reeve ◽  
Mark Desholm ◽  
Anthony D. Fox ◽  
Robert W. Furness ◽  
...  

Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were  collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage.


2018 ◽  
Vol 51 ◽  
pp. 01004
Author(s):  
Alina Raileanu ◽  
Florin Onea ◽  
Liliana Rusu

The objective of the present work is to estimate the influence of several hybrid wind and wave farm configurations on the wave conditions reported in the vicinity of the Saint George coastal area, in the Romanian nearshore of the Black Sea. Based on the wave data coming from a climatological database (ERA20C) and also on in situ measurements, it was possible to identify the most relevant wave patterns, which will be further considered for assessment. The numerical simulations were carried out with the SWAN (Simulating Waves Nearshore) wave model, which may provide a comprehensive picture of the wave transformation in the presence of the marine farms. Although the impact of the wind farm is not visible from the spatial maps, from the analysis of the values corresponding to the reference points, it was noticed that a maximum variation of 2% may occur for several wave parameters.


Green ◽  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Annette Westerhellweg ◽  
Beatriz Cañadillas ◽  
Friederike Kinder ◽  
Thomas Neumann

AbstractSince August 2009, the first German offshore wind farm ‘alpha ventus’ is operating close to the wind measurement platform FINO1. Within the research project RAVE-OWEA the wind flow conditions in ‘alpha ventus’ were assessed in detail, simulated with a CFD wake model and compared with the measurements. Wind data measured at FINO1 have been evaluated for wind speed reduction and turbulence increase in the wake. Additionally operational data were evaluated for the farm efficiency. The atmospheric stability has been evaluated by temperature measurements of air and water and the impact of atmospheric stability on the wind conditions in the wake has been assessed. As an application of CFD models the generation of power matrices is introduced. Power matrices can be used for the continual monitoring of the single wind turbines in the wind farm. A power matrix based on CFD simulations has been created for ‘alpha ventus’ and tested against the measured data.


Author(s):  
Rodolfo Bolaños ◽  
Lars Boye Hansen ◽  
Mikkel Lydholm Rasmussen ◽  
Maziar Golestani ◽  
Jesper Sandvig Mariegaard ◽  
...  

Offshore wind farms around the world are being developed with the objective of increasing the contribution of renewable energy to the global energy consumption. Bathymetric features at the wind farm sites have a strong influence on waves and currents, controlling the propagation and dissipation of flows during normal and extreme conditions. In this work we use a state-of-the-art cost-effective method for bathymetric mapping based on high resolution satellite images to characterize a coastal wind farm region and assess the added value of such data when performing wave modelling. The study area is characterized by the presence of offshore wind farms and a complex bathymetry that feature sand bars and channels. For this study, a satellite derived bathymetry (SDB) was produced using imagery from the Sentinel-2A satellite. The Sentinel-2a data allows for more detailed SDB retrieval than is available in the existing accessible bathymetric datasets. The data is then used in a spectral wave model (MIKE21SW) with different resolutions outlining the impact of large bedforms on surface waves, mainly due to wave breaking. The bathymetry data is also used in a phase-resolving model (MIKE3waveFM) where regular and irregular waves are simulated, outlining the impact of bedforms on individual wave dissipation. Discussion on the satellite derived bathymetry and wave models results are presented in this paper.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Moritz Quandt ◽  
Thies Beinke ◽  
Abderrahim Ait-Alla ◽  
Michael Freitag

In the recent decades, the introduction of a sustainable and green energy infrastructure, and, by this, the reduction of emissions caused by fossil energy generation, has been focused on by industry-oriented nations worldwide. Among the technologies of renewable energy generation, wind energy has the highest deployment rate, due to the high wind resource availability and the high technology maturity reached mainly by the onshore installation of wind turbines. However, the planning and the installation of offshore wind farms are a challenging task, because of harsh weather conditions and limited resource availability. Due to the current practice of decentralised information acquisition by the supply chain partners, we investigate the impact of sharing information on the installation process of offshore wind farms by means of a simulation model. Therefore, relevant information items will be identified in order to improve the installation process.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6559
Author(s):  
Krzysztof Naus ◽  
Katarzyna Banaszak ◽  
Piotr Szymak

Mounting offshore renewable energy installations often involves extra risk regarding the safety of navigation, especially for areas with high traffic intensity. The decision-makers planning such projects need to anticipate and plan appropriate solutions in order to manage navigation risks. This process is referred to as “environmental impact assessment”. In what way can these threats be reduced using the available Automatic Identification System (AIS) tool? This paper presents a study of the concept for the methodology of an a posteriori vessel traffic description in the form of quantitative and qualitative characteristics created based on a large set of historical AIS data (big data). The research was oriented primarily towards the practical application and verification of the methodology used when assessing the impact of the planned Offshore Wind Farm (OWF) Baltic II on the safety of ships in Polish Marine Areas, and on the effectiveness of navigation, taking into account the existing shipping routes and customary and traffic separation systems. The research results (e.g., a significant distance of the Baltic II from the nearest customary shipping route equal to 3 Nm, a small number of vessels in its area in 2017 amounting to only 930) obtained on the basis of the annual AIS data set allowed for an unambiguous and reliable assessment of the impact of OWFs on shipping, thus confirming the suitability of the methodology for MREI spatial planning.


2012 ◽  
Vol 1 (33) ◽  
pp. 73 ◽  
Author(s):  
Annette Renee Grilli ◽  
Malcolm Spaulding ◽  
Christopher O'Reilly ◽  
Gopu Potty

Since 2008, the Rhode Island (RI) Coastal Resources Management Council has been leading the development of an Ocean Special Area Management Plan (Ocean SAMP), in partnership with the University of Rhode Island, resulting in an extensive multidisciplinary analysis of the Rhode Island offshore environment and its suitability to site offshore wind farms. As part of SAMP, a comprehensive macro-siting optimization tool: the Wind Farm Siting Index (WIFSI), integrating technical, societal, and ecological constraints, was developed within the conceptual framework of ecosystem services. WIFSI uses multivariate statistical analyses (principal component and k-means cluster analyses) to define homogeneous regions, which integrate and balance ecological and societal constraints as part of a Cost/Benefit tool. More recently, a Wind Farm micro-Siting Optimization Tool was developed (WIFSO), which uses a genetic algorithm to derive the optimal layout of a wind farm sited within one of the macro-siting selected regions. In this work, we present an overview of the current state of development of the integrated macro- and micro- siting tools.


2018 ◽  
Vol 51 ◽  
pp. 01004
Author(s):  
Alina Raileanu ◽  
Florin Onea ◽  
Liliana Rusu

The objective of the present work is to estimate the influence of several hybrid wind and wave farm configurations on the wave conditions reported in the vicinity of the Saint George coastal area, in the Romanian nearshore of the Black Sea. Based on the wave data coming from a climatological database (ERA20C) and also on in situ measurements, it was possible to identify the most relevant wave patterns, which will be further considered for assessment. The numerical simulations were carried out with the SWAN (Simulating Waves Nearshore) wave model, which may provide a comprehensive picture of the wave transformation in the presence of the marine farms. Although the impact of the wind farm is not visible from the spatial maps, from the analysis of the values corresponding to the reference points, it was noticed that a maximum variation of 2% may occur for several wave parameters.


Sign in / Sign up

Export Citation Format

Share Document