scholarly journals Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5125
Author(s):  
Piotr Mynarek ◽  
Janusz Kołodziej ◽  
Adrian Młot ◽  
Marcin Kowol ◽  
Marian Łukaniszyn

This paper presents a comparison of 30/8 and 12/8 AC permanent magnet motors with distributed (DW) and concentrated winding (CW) designed for electric vehicle traction. Both prototypes are based on an interior permanent magnet (IPM) motor topology and contain V-shape magnets. The radial flux AC IPM motors were designed for an 80 kW propulsion system to achieve 125 N·m. Finite element models (FEM) used to design the geometry of IPM motors and the required useful parameters of electric motors are widely investigated. The accuracy of finite element models is verified and validated on the basis of test data. Numerical simulations of healthy and faulty operation states, and studies of winding faults based on the FEM offer a deeper understanding of the associated phenomena. Therefore, in this paper, a short-circuit fault in a stator winding was simulated to investigate the transient currents under an external load collapse, for all winding phases. These simulations were used to define other important machine parameters to improve mechanical reliability of the motors and to assess the potential risk of permanent magnet (PM) demagnetization. Furthermore, the analysis of local magnetic forces affecting the PMs in the rotor and their possible displacement in a short-circuit situation were performed, also taking into account the centrifugal force. Lastly, it is demonstrated that the choice of winding configuration has a significant impact on the uncontrolled displacement of magnets in the rotor.

2012 ◽  
Vol 529 ◽  
pp. 322-326
Author(s):  
Cai Xia Gao ◽  
Chen Hao ◽  
Yue Bing Zhao

A two-dimensional finite element model of PMLSM is build based on the finite element analysis software Magnet to research the diagnosis of stator winding inter-turn short circuit fault in PMLSM. The velocity, thrust, the stator current performance curve are obtained by simulation using Magnet when PMLSM is normal and under different extent inter-turn short circuit fault, the harmonic content of speed and thrust are analyzed using Matlab / Simulink , the conclusion that the thrust of the harmonic content is used as the Permanent Magnet Linear Synchronous Motor (PMLSM) stator inter-turn short circuit fault feature is proposed , which provided a basis for detection of stator winding inter-turn short circuit fault in PMLSM.


10.14311/732 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
J. A. Walker ◽  
C. Cossar ◽  
T. J. E. Miller

Modern permanent magnet (PM) synchronous brushless machines often have magnetic circuits in which the patterns of saturation are complex and highly variable with the position of the rotor. The classical phasor diagram theory of operation relies on the assumption of sinusoidal variation of flux-linkage with rotor position, and neglects the non-linear effects that arise in different operating states. The finite element method is a useful tool for detailed magnetic analysis, but it is important to verify simulation results by direct measurement of the magnetic characteristics of the motor, in terms of “magnetisation curves” of current and flux-linkage. This paper presents results from finite element simulations to determine the magnetisation in a split-phase interior permanent magnet (IPM) motor. Investigation has been made to determine the effects of the rotor geometry on the synchronous reactances and airgap flux distribution. Comparisons are made with a second IPM motor with a different rotor configuration. 


Sign in / Sign up

Export Citation Format

Share Document