scholarly journals Strategies to Increase the Transient Active Power of Photovoltaic Units during Low Voltage Ride Through

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5236
Author(s):  
Xiangwu Yan ◽  
Baixue Liang ◽  
Jiaoxin Jia ◽  
Waseem Aslam ◽  
Chenguang Wang ◽  
...  

Due to a limitation in the magnitude of the three-phase output inverter currents, the output active power of the photovoltaic (PV) unit has been de-rated during low voltage ride through, which brings great instability risk to the power system. With the increase in the penetration rate of new energy, the impact of the power shortage on the system transient stability increases. It is of great significance to analyze the impact of this transient power shortage on system stability. This article explores methods to improve the active power output capability of photovoltaic units during low-breakthrough periods. A transient simulation model of a grid-connected PV generator with low-voltage ride-through (LVRT) capability is presented, under the condition of meeting the overcurrent capacity of the PV inverter and the requirement of dynamic reactive power support supplied by the PV generator specified in the China grid codes (GB/T 19964-2012) during grid fault. An example system with high PV penetration is built. The change principle and influencing factors of PV transient active power output are analyzed. The simulation model is designed in PowerFactory/DIgSILENT, and several types of three-phase voltage sags are performed in simulation to assess the impact of the active current reference calculation method and the maximum inverter output current (Imax) limit value on the PV active power output. According to the three indexes, namely the maximum active power of PV unit during the fault, the power improvement gradient and the power surge after the fault is cleared. Simulation results showed that using the orthogonal decomposition method to calculate the active current reference can make full use of the current capacity of the converter. Setting Imax to 1.1 rated current of photovoltaic inverter (IN) can reduce the cost-effectiveness ratio of the transient active power output of the PV unit. Therefore, we aim to improve the unit’s transient active power output capacity and realize the optimal effect of improving the transient active power shortage of the system.

2014 ◽  
Vol 986-987 ◽  
pp. 1277-1281
Author(s):  
Tian Fa Liao ◽  
Yang Chun ◽  
Wen Si ◽  
Chang Wen Dong ◽  
Jia Xiang Xue

In this paper, 10KW three-phase three-level photovoltaic grid-tied inverter is applied as hardware platform. Considering the insufficiency of PV arrays power output and low overall efficiency due to grid voltage falls asymmetrically, P-R current controller is used to provide unsymmetrical positive and negative sequence current to the grid so that low voltage ride through (LVPT) in photovoltaic inverter can be achieved. Through the implement of experiments, it is well proved that the requirement of LVPT when the grid voltage falls asymmetrically can be met by applying the solution proposed in this paper.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2899 ◽  
Author(s):  
Alexis B. Rey-Boué ◽  
N. F. Guerrero-Rodríguez ◽  
Johannes Stöckl ◽  
Thomas I. Strasser

This article deals with the vector control in dq axes of a three-phase grid-connected photovoltaic system with single-stage topology and low-voltage-ride-through capability. The photovoltaic generator is built using an array of several series-parallel Suntech PV modules and is modeled as a Lookup Table (two-dimensional; 2-D). The requirements adopted when grid voltage sags occur are based in both the IEC 61400-21 European normative and the allowed amount of reactive power to be delivered according to the Spanish grid code, which avoids the disconnection of the inverter under grid faults by a limitation in the magnitude of the three-phase output inverter currents. For this, the calculation of the positive- and negative-sequences of the grid voltages is made and a conventional three-phase Phase-Locked Loop is used for the inverter-grid synchronization, allowing the control of the active and reactive powers solely with the dq components of the inverter currents. A detailed enhanced flowchart of the control algorithm with low-voltage-ride-through capability is presented and several simulations and experiments using Matlab/SIMULINK and the Controller Hardware-in-the-Loop simulation technique, respectively, are run for several types of one- and three-phase voltage sags in order to validate its behavior.


2014 ◽  
Vol 945-949 ◽  
pp. 2891-2894
Author(s):  
Wen Juan Zhang ◽  
Zhi Xia Han

From a theoretical perspective, this paper develops a systematic approach to analyze the transient characteristics of the low voltage ride through in three-phase short-circuit rotor current. Firstly, the steady state current mathematical model of the system is described. And then, the short-circuit rotor current dynamic characteristic during the low voltage fault is analyzed, the resistance value and switching strategy of crowbar are discussed. Finally, the simulation results and the theoretical analysis manifest that appropriate crowbar reactance value and switching time can improve LVRT control characteristic and grid stability.


This paper presents the simulation-based study and results of a three-phase shunt active power filter (SAPF) for power quality improvement. The power quality of the power systems is degraded because of the presence of non-linear loads at the consumer end. The SAPF can reduce the impact of harmonics caused by the non-linear loads. The analyzed SAPF system is modeled and simulated using MATLAB-Simulink workspace. The ultimate goal of this study is to improve the total harmonic distortion of the system as per the standards defined by IEEE-519.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Chao-Tsung Ma ◽  
Zong-Hann Shi

As the penetration of renewable energy power generation, such as wind power generation, increases low-voltage ride-through (LVRT), control is necessary during grid faults to support wind turbine generators (WTGs) in compensating reactive current to restore nominal grid voltages, and maintain a desired system stability. In contrast to the commonly used centralized LVRT controller, this study proposes a distributed control scheme using a LVRT compensator (LVRTC) capable of simultaneously performing reactive current compensation for doubly-fed induction generator (DFIG)-, or permanent magnet synchronous generator (PMSG)-based WTGs. The proposed LVRTC using silicon carbide (SiC)-based inverters can achieve better system efficiency, and increase system reliability. The proposed LVRTC adopts a digital control scheme and dq-axis current decoupling algorithm to realize simultaneous active/reactive power control features. Theoretical analysis, derivation of mathematical models, and design of the control scheme are initially conducted, and simulation is then performed in a computer software environment to validate the feasibility of the system. Finally, a 2 kVA small-scale hardware system with TI’s digital signal processor (DSP) as the control core is implemented for experimental verification. Results from simulation and implementation are in close agreement, and validate the feasibility and effectiveness of the proposed control scheme.


2019 ◽  
Vol 28 ◽  
pp. 01035
Author(s):  
Bartłomiej Adamski ◽  
Krzysztof Wrobel

The paper presents the results of studies on the impact of the angular range of phase supply on the parameters of a drive based on a switched reluctance motor. The studies were carried out for a drive with a three-phase motor supplied from a modified power supply system, enabling changes in the phase winding configuration. The paper presents the results obtained on the basis of calculations in a simulation model of the drive in the Matlab/Simulink environment for serial and parallel winding configurations.


2012 ◽  
Vol 499 ◽  
pp. 400-404
Author(s):  
Jian Hong Zheng ◽  
Jie Feng Li ◽  
Yu Zhi Gao

With the rapid development of the wind power, it is no longer an isolated power system and gradually incorporated in the local power grid. However, as the increasing proportion of the installed wind power capacity in the power grid, the affection of the wind turbine to the region power system is getting heavier, which inevitably bring some new problems to the power system. The low voltage ride through (LVRT) is the direct embodiment of the power quality. In this paper, we fist analyze the impact of the voltage drop on the double-fed wind turbine. Then, a LVRT control method is proposed based on hardware realization. The detailed explanation of the proposed control method is given at last.


2012 ◽  
Vol 614-615 ◽  
pp. 1816-1819
Author(s):  
Xue Song Zhou ◽  
Su Yang Li ◽  
You Jie Ma

Doubly fed induction generator (DFIG) is receiving more attention nowadays due to growing power demand and environmental concerns. In this paper, five main issues of the DFIG associating with the grid-connection, low voltage ride-through (LVRT), maximum power point tracking (MPPT) control strategy, operation in unbalanced voltage condition, contribution to frequency regulation of grid and influence on power system stability are discussed.


2020 ◽  
Vol 182 ◽  
pp. 02011
Author(s):  
WAN Qian ◽  
Xia Chengjun ◽  
Azeddine Houari ◽  
Zhao Xue ◽  
Xia Chengjun ◽  
...  

Renewable energy sources (RESs) generally connected with electric power system via power electronic interface. This paper presents a reactive power and voltage (Q/V) control strategy of three-phase photovoltaic (PV) system to offering reactive power based on the typical dual-loop control topology. It is worth mentioning that control strategy can support reactive power when a low voltage fault occurs in AC bus without additional compensation device. With the help of the decoupling control, the PV array can generate active power as much as possible in variable external solar radiation conditions. The voltage of PV arrays is adopted as the objective, which on account of the easy availability and controllability of voltage, to control output active power. Besides, accurately modeling process from a PV cell to PV array is described in the beginning to acquire the P-V and V-I characteristics of PV arrays, which promote the designment of Q/V control.


Sign in / Sign up

Export Citation Format

Share Document