scholarly journals Optimal Sizing of Battery-Integrated Hybrid Renewable Energy Sources with Ramp Rate Limitations on a Grid Using ALA-QPSO

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5368
Author(s):  
Ramakrishna S. S. Nuvvula ◽  
Devaraj Elangovan ◽  
Kishore Srinivasa Teegala ◽  
Rajvikram Madurai Elavarasan ◽  
Md. Rabiul Islam ◽  
...  

Higher penetration of variable renewable energy sources into the grid brings down the plant load factor of thermal power plants. However, during sudden changes in load, the thermal power plants support the grid, though at higher ramping rates and with inefficient operation. Hence, further renewable additions must be backed by battery energy storage systems to limit the ramping rate of a thermal power plant and to avoid deploying diesel generators. In this paper, battery-integrated renewable energy systems that include floating solar, bifacial rooftop, and wind energy systems are evaluated for a designated smart city in India to reduce ramping support by a thermal power plant. Two variants of adaptive-local-attractor-based quantum-behaved particle swarm optimization (ALA-QPSO) are applied for optimal sizing of battery-integrated and hybrid renewable energy sources to minimize the levelized cost of energy (LCoE), battery life cycle loss (LCL), and loss of power supply probability (LPSP). The obtained results are then compared with four variants of differential evolution. The results show that out of 427 MW of the energy potential, an optimal set of hybrid renewable energy sources containing 274 MW of rooftop PV, 99 MW of floating PV, and 60 MW of wind energy systems supported by 131 MWh of batteries results in an LPSP of 0.005%, an LCoE of 0.077 USD/kW, and an LCL of 0.0087. A sensitivity analysis of the results obtained through ALA-QPSO is performed to assess the impact of damage to batteries and unplanned load appreciation, and it is found that the optimal set results in more energy sustainability.

Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


Author(s):  
S. N. Volkov ◽  
A. Yu. Sharova

Egypt is the most dynamically developing country in the region of North Africa. In the nearest future, it is expected to turn into the largest economy of Africa in terms of GDP measured by PPP and to overtake Nigeria. The leadership of Egypt considers accelerated development of the national energy complex, including electricity sector, as one of the main drivers of the economic growth. It will be based on the latest achievements of scientific and technological progress and new forms of attracting foreign direct investment, mainly concession agreements in the format of public-private partnership. This allows medium-sized companies to participate in the process of transnationalization that becomes one of its distinguishing features on the modern stage. The master plan for the development of the electric power industry until 2035 envisages the use of various traditional and renewable energy sources. It is planned to create a balanced electric power generation structure, overcoming the current bank tilt towards gasfired thermal power plants. It is expected that in the 2034/35 financial year coalfired power plants in Egypt will account for 34.0% of electricity generation, 19.4% for solar power plants (11.8% for photovoltaics and 7.6% for concentrated solar power), 19.4% for gas-fired power plants, 14.6% for wind power plants, 8.8% for nuclear power plants, 3.2% for hydro power plants and almost 0.6% for thermal power plants working on fuel oil. The objective of electricity sector’s development is the creation of an advanced branch of the economy, in which renewable energy sources and energy-efficient technologies play an important role, ensuring uninterrupted and reliable energy supply, as well as turning the country into a regional energy hub. All this will contribute not only to overcoming the crisis phenomena in the industry itself, observed since 2010s, but also to further change in the nature of the inclusion of the Egyptian economy in the system of the international division of labor, which has undergone significant changes over the past decades.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Tomislav M. Pavlović ◽  
Ivana S. Radonjić ◽  
Dragoljub Lj. Mirjanić ◽  
Darko Divnić

The paper provides information on renewable energy sources (RES) and legislation related to the RES generated electricity in Serbia and the Republic of Srpska. In Serbia, hydropower, wind energy, solar energy, biomass and biogas are used for the RES generated electricity, whereas hydropower, solar energy, biomass and biogas are utilized in the Republic of Srpska. The paper gives an overview of the power of RES power plants and the percentage share of the thermal power plants and RES power plants in electricity production and the guaranteed (incentive) prices for RES generated electricity in Serbia and the Republic of Srpska. Furthermore, legal regulations related to the production of electricity from RES in Serbia and the Republic of Srpska are given. In the conclusion, it is pointed out that RES is increasingly used in Serbia and the Republic of Srpska for the production of electricity, that there are appropriate legal regulations and guarantees (incentive prices) for electricity generated by RES power plants.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3860
Author(s):  
Priyanka Shinde ◽  
Ioannis Boukas ◽  
David Radu ◽  
Miguel Manuel de Manuel de Villena ◽  
Mikael Amelin

In recent years, the vast penetration of renewable energy sources has introduced a large degree of uncertainty into the power system, thus leading to increased trading activity in the continuous intra-day electricity market. In this paper, we propose an agent-based modeling framework to analyze the behavior and the interactions between renewable energy sources, consumers and thermal power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel adaptive trading strategy that can be used by the agents that participate in CID market. The agents learn how to adapt their behavior according to the arrival of new information and how to react to changing market conditions by updating their willingness to trade. A comparative analysis was performed to study the behavior of agents when they adopt the proposed strategy as opposed to other benchmark strategies. The effects of unexpected outages and information asymmetry on the market evolution and the market liquidity were also investigated.


2021 ◽  
Vol 3-4 (185-186) ◽  
pp. 109-125
Author(s):  
Myroslav Podolskyy ◽  
Dmytro Bryk ◽  
Lesia Kulchytska-Zhyhailo ◽  
Oleh Gvozdevych

An analysis of Ukraine’s sustainable development targets, in particular in the field of energy, resource management and environmental protection, are presented. It is shown that regional energetic is a determining factor for achieving the aims of sustainable development. Changes in the natural environment in Ukraine due to external (global) and internal (local) factors that are intertwined and overlapped can cause threats to socio-economic development. It is proved that in the areas of mining and industrial activity a multiple increase in emissions of pollutants into the environment are observed. The comparison confirmed the overall compliance of the structure of consumption of primary energy resources (solid fossil fuels, natural gas, nuclear fuel, oil and petroleum products, renewable energy sources) in Ukraine and in the European Union, shows a steaby trend to reduce the share of solid fuels and natural gas and increasing the shares of energy from renewable sources. For example, in Ukraine the shares in the production and cost of electricity in 2018 was: the nuclear power plants – 54.33 % and in the cost – 26.60 %, the thermal power – 35.95 and 59.52 %, the renewable energy sources – 9.6 and 13.88 %. The energy component must be given priority, as it is crucial for achieving of all other goals of sustainable development and harmonization of socio-economic progress. The paper systematizes the indicators of regional energy efficiency and proposes a dynamic model for the transition to sustainable energy development of the region.


2019 ◽  
Vol 124 ◽  
pp. 01040 ◽  
Author(s):  
D. T. Nguen ◽  
D. N. Pham ◽  
G. R. Mingaleeva ◽  
O. V. Afanaseva ◽  
P. Zunino

The growing demand for energy and fossil fuels creates increased number of difficulties, while renewable energy sources are still rarely used worldwide, particularly in Vietnam. In this article hybrid thermal power plants based on gas turbine plants are discussed, the increased efficiency of which is achieved by air heating after the compressor in solar air heaters. The basic design equations and the results of evaluating the efficiency and fuel consumption are presented for two thermal power plants of 4.6 MW and 11.8 MW. The dependence of the results on the intensity of solar extraction for the climatic conditions of the Ninh Thuan province of the Republic of Vietnam is discussed.


2021 ◽  
Vol 58 (3) ◽  
pp. 47-65
Author(s):  
L. Petrichenko ◽  
R. Petrichenko ◽  
A. Sauhats ◽  
K. Baltputnis ◽  
Z. Broka

Abstract The electricity sector in Europe and in the world is undergoing rapid and profound changes. There is a sharp increase in the capacity of renewable energy sources, coal and nuclear power plants are being closed and new technologies are being introduced. Especially rapid changes are taking place in the energy systems of the Baltic States. Under these conditions, there is an emerging need for new planning tools particularly for the analysis of the power system properties in a long-term perspective. The main contribution of this article lies in the formulation and solution of optimization problems that arise when planning the development of power systems in the Baltic States. To solve this problem, it is necessary to use models of various power plants and make a number of assumptions, the justification of which requires the following actions: to briefly review the current situation of the production and demand of energy in the Baltic power systems; to conduct an overview of the Baltic interconnections and their development; to make forecasts of energy prices, water inflow, energy production and demand; to set and solve the problems of optimization of power plant operation modes; to demonstrate the possibility and limitations of the developed tools on the basis of real-life and forecast data. In this paper, a case study is performed using the main components of the overall modelling framework being developed. It focuses on the Baltic power systems in 2050 under the conditions of significant expansion in the installed capacity of renewable energy sources (RESs) and diminished fossil fuel power plant activity. The resulting electricity generation mix and trade balance with neighbouring countries is assessed, showing that even with significant RES expansion, the Baltic countries remain net importers and because of the intermittency of RESs, there are hours within the year when the demand cannot be met.


Author(s):  
Amit Kishanpuri ◽  
A.K. Sharma

There are many type power plant in India such as Thermal power plant, hydel power plant ,nuclear power plant , solar power plant and wind power plant . In this paper, we are presentedthe renewable energy sources in order to meet an energetic demand in India with a lowestcost. These are beneficial the renewable energy sources like solar, wind, etc. This studyfocuses on making use renewable sources as an alternative source of energy. Renewableenergy sources like solar, wind and renewable energy due to its availability, continuity andcleanness.


2021 ◽  
Vol 343 ◽  
pp. 09002
Author(s):  
Danut Grecea ◽  
Marin Silviu Nan ◽  
Cristian Aron ◽  
Cosmin Vitan ◽  
Bogdan Tomus

The general topic of this paper is to study the possibilities of using renewable energy sources to supply urban consumers electricity, consumers located in areas affected by industrial restructuring. This carries out a comprehensive study on the possibilities of using renewable energy sources in the Motru Basin area. Moreover, creation a mix capable of producing the electricity needed by the inhabitants, in household consumption and not only, is being studied. The entry of free energy market has brought about the alignment with competitive conditions and observance of pollution regulations in force, and energy production has determined retrofitting or restriction of the activity of some thermal power plants due to non-competitive costs for primary energy resources. Our country has a diversified and balanced energy mix (hydropower, nuclear energy, coal and natural gas) but it must be complemented by renewable sources (wind, solar, biomass) to provide stability and energy safety prospects.


Author(s):  
Azrina Mujanović ◽  
Tatjana Konjić ◽  
Adisa Dedić

Renewable energy sources such as hydro, wind and solar energy are taking an increasing share in the electricity mix. However, electricity production from thermal power plants is independent of the weather conditions and is still important as a back-up power source to renewable energy sources. Given the fact that the electricity market is open, it is clear that each MWh is important. Therefore, auxiliary power systems as a part of thermal power plants should be also energy efficient. The main aim of the presented research was to investigate the efficient operation of different consumers in the auxiliary power system in the old-dated thermal power plant ‘’Tuzla’’ depending on different power at generator output. The performed analysis identified consumers suitable for electricity efficiency improvement giving results of power savings obtained on modestly available measurements and old-date technical documentation. Following obtained results, some recommendations for improving electricity efficiency were proposed with a rough calculation of possible savings. Measurements of auxiliary power system consumption depending on power at generator output in new thermal power plant ‘’Stanari’’ was presented. Future trends and directions in thermal power plant automation were also discussed.


Sign in / Sign up

Export Citation Format

Share Document