scholarly journals High-Temperature Fluidized Bed Processing of Waste Electrical and Electronic Equipment (WEEE) as a Way to Recover Raw Materials

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5639
Author(s):  
Witold Żukowski ◽  
Amelia Kowalska ◽  
Jan Wrona

This paper explores the effectiveness of metal recovery and values of gaseous emissions during thermal e-waste processing followed by magnetic separation. The thermal process of conversion of this kind of waste is difficult due to the uncertainty of the operation when compared to the processing of homogeneous materials. This is due to their complex and heterogeneous structure. The adoption of the fluidized bed reactor makes the process feasible, stabilizing it significantly and limiting emissions of harmful gases. Mobile cellphones were used as the raw input material of 450 g total mass. During the thermal transformation, the exhaust gases such as: CO, CO2, NOx, SO2, HCI, HBr, HCN, NH3, phenol, hydrocarbons, HF and COCI2 were analysed. The thermal treatment resulted in 333.6 g of solids in the fluidized bed. They were fragmented into grains smaller than 1 mm and 0.5 mm. The process of magnetic enrichment was used next on grains greater than 1 mm and smaller than 0.5 mm. The process was carried out using a neodymium magnet for particles >1 mm and a plate electromagnetic separator (powered by a three-phase current) together with a 1-disc tape-type separator, which was used for particles <1 mm. Such an approach resulted in the recovery of 81.9% of cobalt, 96.6% of iron and 99.2% of neodymium. The most efficient method of magnetic enriching (MS) proved to be the use of the electromagnetic plate separator.

2009 ◽  
Vol 33 (1) ◽  
pp. 359-370 ◽  
Author(s):  
Mauren Fuentes ◽  
Miguel C. Mussati ◽  
Nicolás J. Scenna ◽  
Pío A. Aguirre

2018 ◽  
Vol 61 (3) ◽  
pp. 269-285 ◽  
Author(s):  
R. K. Padhi ◽  
D. T. K. Dora ◽  
Y. K. Mohanty ◽  
G. K. Roy ◽  
B. Sarangi

1991 ◽  
Vol 23 (7-9) ◽  
pp. 1347-1354 ◽  
Author(s):  
F. Trinet ◽  
R. Heim ◽  
D. Amar ◽  
H. T. Chang ◽  
B. E. Rittmann

A three-phase, liquid-fluidized-bed biofilm reactor was operated over wide ranges of liquid velocity, air velocity, medium concentration, and substrate surface loading. The biofilm characteristics (total colonization, polysaccharide content, density, and thickness) and the specific detachment coefficient (bs) were determined by a combination of experimental measurements and a hydrodynamic model. The results demonstrated that dense and thin biofilms were induced by the physical condition of high particle-to-particle contacts and high liquid turbulence. The biofilm's polysaccharide content was increased by increased air turbulence and a low substrate availability. The specific detachment coefficient, bs, was strongly correlated to the concentration of the medium (negatively) and the polysaccharide content (positively). Overall, the bs can be controlled significantly by the gas and liquid velocities; increasing either velocity tends to increase bs.


2017 ◽  
Vol 31 (10) ◽  
pp. 11069-11077 ◽  
Author(s):  
Hao Dong ◽  
Xuguang Jiang ◽  
Guojun Lv ◽  
Fei Wang ◽  
Qunxing Huang ◽  
...  

2012 ◽  
Vol 49 (No. 1) ◽  
pp. 7-11 ◽  
Author(s):  
J. Souček ◽  
I. Hanzlíková ◽  
P. Hutla

In case of pressed composite biofuels production the important part of the production process is the input row materials disintegration. In dependence on disintegrated material properties, disintegration device, grinding stage and technological process there is in practice necessary for disintegration of culm materials 0.5&ndash;7% and of wooden species even 0.75&ndash;10% of total energetical content of material. A wide range of these figures means that in this sphere of raw materials adaptation can be reached relative high savings through correct choice of technological process and device. The authors of the paper have measured energy consumption of fine disintegration of lignocellulose materials in dependence on particles size and moisture. By the realized measurement of different average size of both input and output particles and consequent statistical evaluation was proved the fiducial energy consumption increase at higher stage of disintegration and higher moisture of the input material. All measurements were carried-out for the grinding mill &Scaron;K 300 and the output particles size was limited by the exchange sieves mesh dimension.


2019 ◽  
Vol 209 ◽  
pp. 115177 ◽  
Author(s):  
Keying Ma ◽  
Xiliang Sun ◽  
Yuanyuan Shao ◽  
Mingyan Liu ◽  
Jesse Zhu

1993 ◽  
Vol 39-40 (1) ◽  
pp. 455-466 ◽  
Author(s):  
Eduardo D. Dabdoub Paz ◽  
Maria Helena A. Santana ◽  
Silvia Y. Eguchi

Sign in / Sign up

Export Citation Format

Share Document