magnetic enrichment
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 3)

The Analyst ◽  
2022 ◽  
Author(s):  
Wenmin Cheng ◽  
Haimei Shi ◽  
Mengjing Teng ◽  
Menghuan Yu ◽  
Bin Feng ◽  
...  

Urinary tract infections (UTIs) are severe public health problem and caused by mono- or poly-bacteria. Culture-based methods are routinely used for the diagnosis of UTIs in clinical practice, but those...


2021 ◽  
Vol 29 (1) ◽  
pp. 62-75
Author(s):  
Ruth Ella Linsky ◽  
R. Steven Wagner ◽  
Reniastoetie Djojoasmoro ◽  
Joseph Lorenz ◽  
Biruté M. F. Galdikas

Previous genetic studies of orangutans (Pongo spp.) have relied mainly upon mitochondrial DNA or microsatellite short tandem repeats (STR) for genomic genotyping analysis. Scientists have yet to take advantage of the genetic closeness of the great apes to humans for genomic analysis by using advanced techniques available for human genotyping. To genotype orangutans at Tanjung Puting National Park, we developed a novel combination of a methyl-based magnetic enrichment capture of genomic fecal DNA with genotyping on a human targeted single nucleotide polymorphism (SNP) microarray, and compared this to additional microsatellite (STR) micro-capillary genotyping. We successfully isolated 125 known human genomic SNP loci (0.08% of those targeted) which hybridized orangutan DNA on the human targeted Illumina Infinium QC array. We estimated genetic diversity and relatedness (r) using three estimators for a total of 32 (21 female and 9 male) wild orangutans at the Camp Leakey study site. Average TrioML relatedness within the sample, estimated from our combo SNP/STR dataset, was at a range consistent with half and first cousins (r = .082). All sampled males and females had relatives within the study site indicating we have verified a local, closely related community of wild orangutans at Camp Leakey.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2155
Author(s):  
Stephanie I. Pearlman ◽  
Eric M. Tang ◽  
Yuankai K. Tao ◽  
Frederick R. Haselton

In developing countries, the most common diagnostic method for tuberculosis (TB) is microscopic examination sputum smears. Current assessment requires time-intensive inspection across the microscope slide area, and this contributes to its poor diagnostic sensitivity of ≈50%. Spatially concentrating TB bacteria in a smaller area is one potential approach to improve visual detection and potentially increase sensitivity. We hypothesized that a combination of magnetic concentration and induced droplet Marangoni flow would spatially concentrate Mycobacterium tuberculosis on the slide surface by preferential deposition of beads and TB–bead complexes in the center of an evaporating droplet. To this end, slide substrate and droplet solvent thermal conductivities and solvent surface tension, variables known to impact microfluidic flow patterns in evaporating droplets, were varied to select the most appropriate slide surface coating. Optimization in a model system used goniometry, optical coherence tomography, and microscope images of the final deposition pattern to observe the droplet flows and maximize central deposition of 1 μm fluorescent polystyrene particles and 200 nm nanoparticles (NPs) in 2 μL droplets. Rain-X® polysiloxane glass coating was identified as the best substrate material, with a PBS-Tween droplet solvent. The use of smaller, 200 nm magnetic NPs instead of larger 1 μm beads allowed for bright field imaging of bacteria. Using these optimized components, we compared standard smear methods to the Marangoni-based spatial concentration system, which was paired with magnetic enrichment using iron oxide NPs, isolating M. bovis BCG (BCG) from samples containing 0 and 103 to 106 bacilli/mL. Compared to standard smear preparation, paired analysis demonstrated a combined volumetric and spatial sample enrichment of 100-fold. With further refinement, this magnetic/Marangoni flow concentration approach is expected to improve whole-pathogen microscopy-based diagnosis of TB and other infectious diseases.


Author(s):  
Zhang Ji ◽  
Chuan Zhang ◽  
Yang Ye ◽  
Jiali Ji ◽  
Hongguang Dong ◽  
...  

In this work, it is shown that surface-enhanced Raman scattering (SERS) measurements can be performed using liquid platforms to perform bioanalysis at sub-pM concentrations. Using magnetic enrichment with gold-coated magnetic nanoparticles, the high sensitivity was verified with nucleic acid and protein targets. The former was performed with a DNA fragment associated with the bacteria Staphylococcus aureus, and the latter using IgG antibody, a biomarker for COVID-19 screening. It is anticipated that this work will inspire studies on ultrasensitive SERS analyzers suitable for large-scale applications, which is particularly important for in vitro diagnostics and environmental studies.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5639
Author(s):  
Witold Żukowski ◽  
Amelia Kowalska ◽  
Jan Wrona

This paper explores the effectiveness of metal recovery and values of gaseous emissions during thermal e-waste processing followed by magnetic separation. The thermal process of conversion of this kind of waste is difficult due to the uncertainty of the operation when compared to the processing of homogeneous materials. This is due to their complex and heterogeneous structure. The adoption of the fluidized bed reactor makes the process feasible, stabilizing it significantly and limiting emissions of harmful gases. Mobile cellphones were used as the raw input material of 450 g total mass. During the thermal transformation, the exhaust gases such as: CO, CO2, NOx, SO2, HCI, HBr, HCN, NH3, phenol, hydrocarbons, HF and COCI2 were analysed. The thermal treatment resulted in 333.6 g of solids in the fluidized bed. They were fragmented into grains smaller than 1 mm and 0.5 mm. The process of magnetic enrichment was used next on grains greater than 1 mm and smaller than 0.5 mm. The process was carried out using a neodymium magnet for particles >1 mm and a plate electromagnetic separator (powered by a three-phase current) together with a 1-disc tape-type separator, which was used for particles <1 mm. Such an approach resulted in the recovery of 81.9% of cobalt, 96.6% of iron and 99.2% of neodymium. The most efficient method of magnetic enriching (MS) proved to be the use of the electromagnetic plate separator.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1605
Author(s):  
Pingping Gao ◽  
Lihan Wang ◽  
Yang He ◽  
Yitian Wang ◽  
Xinyan Yang ◽  
...  

In this paper, a novel and ultrasensitive lateral flow assay (LFA) based on aptamer–magnetic separation, and multifold Au nanoparticles (AuNPs) was developed for visual detecting Salmonella enterica ser. Typhimurium (S. Typhimurium). The method realized magnetic enrichment and signal transduction via magnetic separation and achieved signal amplification through hybridizing AuNPs–capture probes and AuNPs–amplification probes to form multifold AuNPs. Two different thiolated single-strand DNA (ssDNA) on the AuNPs–capture probe played different roles. One was combined with the AuNPs–amplification probe on the conjugate pad to achieve enhanced signals. The other was connected to transduction ssDNA1 released by aptamer–magnetic capture of S. Typhimurium, and captured by the T-line, forming a positive signal. This method had an excellent linear relationship ranging from 8.6 × 102 CFU/mL to 8.6 × 107 CFU/mL with the limit of detection (LOD) as low as 8.6 × 100 CFU/mL in pure culture. In actual samples, the visual LOD was 4.1 × 102 CFU/mL, which did not carry out nucleic acid amplification and pre-enrichment, increasing three orders of magnitudes than unenhanced assays with single–dose AuNPs and no magnetic separation. Furthermore, the system showed high specificity, having no reaction with other nontarget strains. This visual signal amplificated system would be a potential platform for ultrasensitive monitoring S. Typhimurium in milk samples.


Author(s):  
Sh. Alikulov ◽  
O. Azimov ◽  
L. Azizov ◽  
G. Dzhalilova

The purpose of this research is to study the material composition of the Tebinbulak ore and to develop a technology for extracting iron, vanadium and titanium. Titanomagnetites are a type of ore raw material with a complex composition, containing iron oxides, titanium dioxide and vanadium pentoxide. The technology for processing titanomagnetite ores differs from the technology for beneficiation of iron ores in that during the processing it is necessary to separate vanadium and titanium oxides from iron oxides.


Langmuir ◽  
2021 ◽  
Author(s):  
The Son Le ◽  
Sizun He ◽  
Mari Takahashi ◽  
Yasushi Enomoto ◽  
Yasufumi Matsumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document