scholarly journals Tailoring Mission Effectiveness and Efficiency of a Ground Vehicle Using Exergy-Based Model Predictive Control (MPC)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6049
Author(s):  
Robert Jane ◽  
Tae Young Kim ◽  
Emily Glass ◽  
Emilee Mossman ◽  
Corey James

To ensure dominance over a multi-domain battlespace, energy and power utilization must be accurately characterized for the dissimilar operational conditions. Using MATLAB/Simulink in combination with multiple neural networks, we created a methodology which was simulated the energy dynamics of a ground vehicle in parallel to running predictive neural network (NN) based predictive algorithms to address two separate research questions: (1) can energy and exergy flow characterization be developed at a future point in time, and (2) can we use the predictive algorithms to extend the energy and exergy flow characterization and derive operational intelligence, used to inform our control based algorithms or provide optimized recommendations to a battlefield commander in real-time. Using our predictive algorithms we confirmed that the future energy and exergy flow characterizations could be generated using the NNs, which was validated through simulation using two separately created datasets, one for training and one for testing. We then used the NNs to implement a model predictive control (MPC) framework to flexibly operate the vehicles thermal coolant loop (TCL), subject to exergy destruction. In this way we could tailor the performance of the vehicle to accommodate a more mission effective solution or a less energy intensive solution. The MPC resulted in a more effective solution when compared to six other simulated conditions, which consumed less exergy than two of the six cases. Our results indicate that we can derive operational intelligence from the predictive algorithms and use it to inform a model predictive control (MPC) framework to reduce wasted energy and exergy destruction subject to the variable operating conditions.

AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1241-1259
Author(s):  
Lei Liu ◽  
◽  
Takeyoshi Kato ◽  
Paras Mandal ◽  
Alexey Mikhaylov ◽  
...  

<abstract><p>This work presents a load frequency control scheme in Renewable Energy Sources(RESs) power system by applying Model Predictive Control(MPC). The MPC is designed depending on the first model parameter and then investigate its performance on the second model to confirm its robustness and effectiveness over a wide range of operating conditions. The first model is 100% RESs system with Photovoltaic generation(PV), wind generation(WG), fuel cell, seawater electrolyzer, and storage battery. From the simulation results of the first case, it shows the control scheme is efficiency. And base on the good results of the first case study, to propose a second case using a 10-bus power system of Okinawa island, Japan, to verify the efficiency of proposed MPC control scheme again. In addition, in the second case, there also applied storage devices, demand-response technique and RESs output control to compensate the system frequency balance. Last, there have a detailed results analysis to compare the two cases simulation results, and then to Prospects for future research. All the simulations of this work are performed in Matlab®/Simulink®.</p></abstract>


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1738
Author(s):  
Zhenhao Tang ◽  
Xiaoyan Wu ◽  
Shengxian Cao

A data-driven modeling method with feature selection capability is proposed for the combustion process of a station boiler under multi-working conditions to derive a nonlinear optimization model for the boiler combustion efficiency under various working conditions. In this approach, the principal component analysis method is employed to reconstruct new variables as the input of the predictive model, reduce the over-fitting of data and improve modeling accuracy. Then, a k-nearest neighbors algorithm is used to classify the samples to distinguish the data by the different operating conditions. Based on the classified data, a least square support vector machine optimized by the differential evolution algorithm is established. Based on the boiler key parameter model, the proposed model attempts to maximize the combustion efficiency under the boiler load constraints, the nitrogen oxide (NOx) emissions constraints and the boundary constraints. The experimental results based on the actual production data, as well as the comparative analysis demonstrate: (1) The predictive model can accurately predict the boiler key parameters and meet the demands of boiler combustion process control and optimization; (2) The model predictive control algorithm can effectively control the boiler combustion efficiency, the average errors of simulation are less than 5%. The proposed model predictive control method can improve the quality of production, reduce energy consumption, and lay the foundation for enterprises to achieve high efficiency and low emission.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Jorge Duarte ◽  
Jesús Garcia ◽  
Javier Jiménez ◽  
Marco E. Sanjuan ◽  
Antonio Bula ◽  
...  

This paper analyzes the feasibility of applying model predictive control strategies for mitigation of the auto-ignition phenomenon, which affects the performance of spark-ignition internal combustion engines. The first part of this paper shows the implementation and experimental validation of a two-dimensional model, based on thermodynamic equations, to simulate operating conditions in engines fueled with natural gas. Over this validated model, several control strategies are studied in order to evaluate, through simulation analysis, which of these offer the best handling capacity of the auto-ignition phenomenon. In order to achieve this goal, multivariate control strategies are implemented for a simultaneous manipulation of the fuel/air ratio, the crank angle at ignition, and the inlet pressure. The controlled variable in this research is the temperature at the ignition point. This temperature is obtained through an estimation based on pressure in the combustion chamber at that point, which is located toward the end zone of the compression stroke. If the ignition temperature of the fuel–air mixture is reached during the compression process, then auto-ignition takes place. Proposed control strategies consist of maintaining the temperature in the ignition point below the fuel–air mixture auto-ignition temperature. The results show that auto-ignition is difficult to avoid using a single input–single output (SISO) strategy. However, a multiple input–single output (MISO) approach avoids the influence of the phenomenon without a significant impact over the engine's performance. Among the developed strategies, an approach based on model predictive control and feedforward control strategy shows the best performance, measured through the integral absolute error (IAE) index. These results open the possibility of new ways for improving the control capacity of auto-ignition phenomenon in engines compared to currently available feedback control systems.


2013 ◽  
Vol 198 ◽  
pp. 525-532
Author(s):  
Stefan Grosswindhager ◽  
Klemens Schulmeister ◽  
Martin Kozek

Endless metal belts play an important role in advanced processing lines or belt machines for many production processes. In contrast to standard conveyor lines metal belts must be run over cylindrical return drums due to the high elastic modulus of the belts material and the usually high level of pre-stress. Since cylindrical return drums do not provide passive lateral guidance (self-centering) they have to be actively adjusted by swiveling drum axes. In this work a suitable control scheme is presented to guarantee a set lateral position at the return drums even in the presence of a lateral disturbance force. Since the lateral dynamics of the endless belt show strong coupling between all inputs and all outputs a multivariate control approach with inherent decoupling capabilities is needed. Moreover, a number of technological constraints must be fulfilled for all operating conditions such as limited swivel angles and the maximum allowable tensile stress in the belt. In this research work a constrained model predictive control (MPC) is therefore designed to overcome the aforementioned problems. The model is based on a description in the spatial domain (belt travel) which renders the model independent of operating speed. Using this model a multi-input multi-output (MIMO) MPC-scheme is derived also in state-space representation. Moreover, the control explicitly considers constraints on the control inputs and on the maximum allowable belt stress.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 501-518
Author(s):  
Chaofang Hu ◽  
Lingxue Zhao ◽  
Lei Cao ◽  
Patrick Tjan ◽  
Na Wang

In this paper, a strategy based on model predictive control consisting of path planning and path tracking is designed for obstacle avoidance steering control problem of the unmanned ground vehicle. The path planning controller can reconfigure a new obstacle avoidance reference path, where the constraint of the front-wheel-steering angle is transformed to formulate lateral acceleration constraint. The path tracking controller is designed to realize the accurate and fast following of the reconfigured path, and the control variable of tracking controller is steering angle. In this work, obstacles are divided into two categories: static and dynamic. When the decision-making system of the unmanned ground vehicle determines the existence of static obstacles, the obstacle avoidance path will be generated online by an optimal path reconfiguration based on direct collocation method. In the case of dynamic obstacles, receding horizon control is used for real-time path optimization. To decrease online computation burden and realize fast path tracking, the tracking controller is developed using the continuous-time model predictive control algorithm, where the extended state observer is combined to estimate the lumped disturbances for strengthening the robustness of the controller. Finally, simulations show the effectiveness of the proposed approach in comparison with nonlinear model predictive control, and the CarSim simulation is presented to further prove the feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document