scholarly journals Environmental Life Cycle Assessment of Ammonia-Based Electricity

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6721
Author(s):  
Andrea J. Boero ◽  
Kevin Kardux ◽  
Marina Kovaleva ◽  
Daniel A. Salas ◽  
Jacco Mooijer ◽  
...  

In recent years, several researchers have studied the potential use of ammonia (NH3) as an energy vector, focused on the techno-economic advantages and challenges for full global deployment. The use of ammonia as fuel is seen as a strategy to support decarbonization; however, to confirm the sustainability of the shift to ammonia as fuel in thermal engines, a study of the environmental profile is needed. This paper aims to assess the environmental life cycle impacts of ammonia-based electricity generated in a combined heat and power cycle for different ammonia production pathways. A cradle-to-gate assessment was developed for both ammonia production and ammonia-based electricity generation. The results show that electrolysis-based ammonia from renewable and nuclear energy have a better profile in terms of global warming potential (0.09–0.70 t CO2-eq/t NH3), fossil depletion potential (3.62–213.56 kg oil-eq/t NH3), and ozone depletion potential (0.001–0.082 g CFC-11-eq/t NH3). In addition, surplus heat for district or industrial applications offsets some of the environmental burden, such as a more than 29% reduction in carbon footprint. In general, ammonia-based combined heat and power production presents a favorable environmental profile, for example, the carbon footprint ranges from −0.480 to 0.003 kg CO2-eq/kWh.

2019 ◽  
Vol 9 (5) ◽  
pp. 1021 ◽  
Author(s):  
Won-Jun Park ◽  
Taehyoung Kim ◽  
Seungjun Roh ◽  
Rakhyun Kim

This study assessed the influence of matter discharged during the production (dry/wet) of recycled aggregate on global warming potential (GWP) and acidification potential (AP), eutrophication potential (EP), ozone depletion potential (ODP), biotic resource depletion potential (ADP), photochemical ozone creation potential (POCP) using the ISO 14044 (LCA) standard. The LCIA of dry recycled aggregate was 2.94 × 10−2 kg-CO2eq/kg, 2.93 × 10−5 kg-SO2eq/kg, 5.44 × 10−6 kg-PO43eq/kg, 4.70 × 10−10 kg-CFC11eq/kg, 1.25 × 10−5 kg-C2H4eq/kg, and 1.60 × 10−5 kg-Antimonyeq/kg, respectively. The environmental impact of recycled aggregate (wet) was up to 16~40% higher compared with recycled aggregate (dry); the amount of energy used by impact crushers while producing wet recycled aggregate was the main cause for this result. The environmental impact of using recycled aggregate was found to be up to twice as high as that of using natural aggregate, largely due to the greater simplicity of production of natural aggregate requiring less energy. However, ADP was approximately 20 times higher in the use of natural aggregate because doing so depletes natural resources, whereas recycled aggregate is recycled from existing construction waste. Among the life cycle impacts assessment of recycled aggregate, GWP was lower than for artificial light-weight aggregate but greater than for slag aggregate.


Author(s):  
Sushil M. Chaudhari ◽  
Rohit B. Meshram

This paper includes a cradle-to-gate life cycle impact evaluation of gasoline blends in India. The potential environmental impacts of gasoline blends with three major components, i.e., methanol, ethanol, and n-butanol are assessed. The production of methanol from the natural gas reforming process, ethanol from hydrogenation with nitric acid, and n-butanol from the oxo process are considered in the current study. The results show that the gasoline blending with methanol has the lowest impact (11 categories) and is nearly constant from 5 to 15%. For gasoline with ethanol as an additive, the global warming potential, ozone depletion potential, and abiotic depletion potential rise with increasing ethanol addition. Meanwhile, increasing ethanol addition reduces the acidification potential and terrestric ecotoxicity potential impact of gasoline blends. Similarly, gasoline with n-butanol as an additive has higher acidification potential, eutrophication potential, human toxicity potential, terrestric ecotoxicity potential, marine aquatic ecotoxicity potential, and photochemical ozone creation potential compared to methanol and ethanol.


2020 ◽  
Vol 13 (1) ◽  
pp. 158
Author(s):  
Sishen Wang ◽  
Hao Wang ◽  
Pengyu Xie ◽  
Xiaodan Chen

Low-carbon transport system is desired for sustainable cities. The study aims to compare carbon footprint of two transportation modes in campus transit, bus and bike-share systems, using life-cycle assessment (LCA). A case study was conducted for the four-campus (College Ave, Cook/Douglass, Busch, Livingston) transit system at Rutgers University (New Brunswick, NJ). The life-cycle of two systems were disaggregated into four stages, namely, raw material acquisition and manufacture, transportation, operation and maintenance, and end-of-life. Three uncertain factors—fossil fuel type, number of bikes provided, and bus ridership—were set as variables for sensitivity analysis. Normalization method was used in two impact categories to analyze and compare environmental impacts. The results show that the majority of CO2 emission and energy consumption comes from the raw material stage (extraction and upstream production) of the bike-share system and the operation stage of the campus bus system. The CO2 emission and energy consumption of the current campus bus system are 46 and 13 times of that of the proposed bike-share system, respectively. Three uncertain factors can influence the results: (1) biodiesel can significantly reduce CO2 emission and energy consumption of the current campus bus system; (2) the increased number of bikes increases CO2 emission of the bike-share system; (3) the increase of bus ridership may result in similar impact between two systems. Finally, an alternative hybrid transit system is proposed that uses campus buses to connect four campuses and creates a bike-share system to satisfy travel demands within each campus. The hybrid system reaches the most environmentally friendly state when 70% passenger-miles provided by campus bus and 30% by bike-share system. Further research is needed to consider the uncertainty of biking behavior and travel choice in LCA. Applicable recommendations include increasing ridership of campus buses and building a bike-share in campus to support the current campus bus system. Other strategies such as increasing parking fees and improving biking environment can also be implemented to reduce automobile usage and encourage biking behavior.


2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.


Author(s):  
M. A. Parvez Mahmud ◽  
Nazmul Huda ◽  
Shahjadi Hisan Farjana ◽  
Candace Lang

2019 ◽  
Vol 236 ◽  
pp. 117638
Author(s):  
Alessio Ilari ◽  
Daniele Duca ◽  
Giuseppe Toscano ◽  
Ester Foppa Pedretti

2013 ◽  
Vol 281 ◽  
pp. 578-581
Author(s):  
Sanjay S. Bhagwat ◽  
S.D. Pohekar ◽  
A.M. Wankhade

Keywords: CHP, Bagasse, Heat Power Ratio, TCD Abstract: A huge potential for power generation from waste fuels exists within the sugar cane industry. Newly developed advanced high pressure boiler technology and utilizing modified combined heat and power cycle opens the way to fully exploit this potential, yielding more kWh’s of electric power per tonne of cane. This paper deals feasibility of bagasse based modified CHP cycle for 2500TCD sugar factory for surplus power generation.


Sign in / Sign up

Export Citation Format

Share Document