scholarly journals Analysis of Life Cycle Environmental Impact of Recycled Aggregate

2019 ◽  
Vol 9 (5) ◽  
pp. 1021 ◽  
Author(s):  
Won-Jun Park ◽  
Taehyoung Kim ◽  
Seungjun Roh ◽  
Rakhyun Kim

This study assessed the influence of matter discharged during the production (dry/wet) of recycled aggregate on global warming potential (GWP) and acidification potential (AP), eutrophication potential (EP), ozone depletion potential (ODP), biotic resource depletion potential (ADP), photochemical ozone creation potential (POCP) using the ISO 14044 (LCA) standard. The LCIA of dry recycled aggregate was 2.94 × 10−2 kg-CO2eq/kg, 2.93 × 10−5 kg-SO2eq/kg, 5.44 × 10−6 kg-PO43eq/kg, 4.70 × 10−10 kg-CFC11eq/kg, 1.25 × 10−5 kg-C2H4eq/kg, and 1.60 × 10−5 kg-Antimonyeq/kg, respectively. The environmental impact of recycled aggregate (wet) was up to 16~40% higher compared with recycled aggregate (dry); the amount of energy used by impact crushers while producing wet recycled aggregate was the main cause for this result. The environmental impact of using recycled aggregate was found to be up to twice as high as that of using natural aggregate, largely due to the greater simplicity of production of natural aggregate requiring less energy. However, ADP was approximately 20 times higher in the use of natural aggregate because doing so depletes natural resources, whereas recycled aggregate is recycled from existing construction waste. Among the life cycle impacts assessment of recycled aggregate, GWP was lower than for artificial light-weight aggregate but greater than for slag aggregate.

2020 ◽  
Vol 12 (19) ◽  
pp. 8096
Author(s):  
Won-Jun Park ◽  
Rakhyun Kim ◽  
Seungjun Roh ◽  
Hoki Ban

The purpose of this study was to identify the major wastes generated during the construction phase using a life cycle assessment. To accomplish this, the amount of waste generated in the construction phase was deduced using the loss rate and weight conversions. Major construction wastes were assessed using six comprehensive environmental impact categories, including global warming potential, abiotic depletion potential, acidification potential, eutrophication potential, ozone depletion potential, and photochemical ozone creation potential. According to the analysis results, five main construction wastes—concrete, rebar, cement, polystyrene panel, and concrete block—comprehensively satisfied the 95% cutoff criteria for all six environmental impact categories. The results of the environmental impact characterization assessment revealed that concrete, concrete block, and cement waste accounted for over 70% of the contribution level in all the environmental impact categories except resource depletion. Insulation materials accounted for 1% of the total waste generated but were identified by the environmental impact assessment to have the highest contribution level.


2020 ◽  
Vol 993 ◽  
pp. 1473-1480
Author(s):  
Yan Jiao Zhang ◽  
Li Ping Ma ◽  
Shi Wei Ren ◽  
Meng Chi Huang ◽  
Ying Wang ◽  
...  

With the emphasis of national policies on green manufacturing and the recognition of the people for green development, expanding the green assessment of products will be the general trend. In this study the life cycle assessment method was used to compile a list of resources, energy consumption and pollutant emissions during the life cycle of typical ordinary gypsum plasterboard and functional phase-change gypsum plasterboard, the key environmental impact indicators of both products during the life cycle calculated, the key stages affecting the environmental performance of products analyzed and identified, and the difference in environmental impacts between phase-change gypsum plasterboard and ordinary gypsum plasterboard compared and analyzed, for guiding the selection of green building materials and the development of ecological building materials. The results show that the global warming potential of phase-change gypsum plasterboard is 3.42 kgCO2 equivalent/m2, the non-renewable resource depletion potential is 2.25×10-5 kgSb equivalent/m2, the respiratory inorganic is 1.97×10-3 kgPM2.5 equivalent/m2, the eutrophication is 1.21×10-3 kgPO43- equivalent/m2, and the acidification is 9.47×10-3 kgSO2 equivalent/m2. Compared with ordinary gypsum plasterboard, the phase-change gypsum plasterboard shows the biggest increase by 874.03% in non-renewable resource depletion potential. The major environmental impact of ordinary gypsum plasterboard in the life cycle is mainly from energy use, and the transport process is the main stage of eutrophication. The use of phase-change materials in the phase-change gypsum plasterboard is the main stage causing environmental impact.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 579
Author(s):  
Nicole Mélanie Falla ◽  
Simone Contu ◽  
Sonia Demasi ◽  
Matteo Caser ◽  
Valentina Scariot

Nowadays the heightened awareness of the critical trend in resource depletion impels to improve the eco − sustainability of any productive process. The research presented in this paper aims to quantify the environmental impact of the emerging productive process of edible flowers, focusing on two model species, i.e., Begonia x semperflorens − cultorum hort and Viola cornuta L., and two types of product, i.e., flowering potted plants sold in plastic vases and packaged flowers ready to be consumed. The study was carried out in an Italian nursery located in Tuscany, interviewing the owners in order to complete the Life Cycle Inventory, assessing the value of the impact categories, and using the “cradle to gate” approach. The information about the production of flowering potted plants and packaged flowers were inserted in a database and elaborated by the appropriate software. The results of the Life Cycle Assessment (LCA) analysis referred to 1 g of fresh edible flowers and were expressed in four impact categories. Global Warming Potential (GWP) values ranged from 24.94 to 31.25 g CO2 eq/g flowers, Acidification Potential (AP) ranged from 8.169E − 02 to 1.249E − 01 g SO2 eq/g flowers, Eutrophication Potential (EP) ranged from 3.961E − 02 to 5.284E − 02 g PO43 − eq/g flowers, and Photochemical Ozone Creation Potential (POCP) ranged from 8.998E − 03 to 1.134E − 02 g C2H4 eq/g flowers. Begonias showed lower emissions than violas in the GWP and POCP indexes, whereas violas showed lower values in the AP and EP impact categories. The most impactful phase was the propagation, accounting on average for 42% of the total emissions. Overall, the findings highlighted a higher environmental load for the production of both begonias and violas packaged flowers, especially if in small containers, rather than as potted plants, with an emission percentage increase from 8% to 17% among the impact categories.


2020 ◽  
Vol 10 (21) ◽  
pp. 7503
Author(s):  
Seungjun Roh ◽  
Rakhyun Kim ◽  
Won-Jun Park ◽  
Hoki Ban

This study aims to compare the potential environmental impact of the manufacture and production of recycled and by-product aggregates based on a life cycle assessment and to evaluate the environmental impact and cost when they are used as aggregates in concrete. To this end, the six potential environmental impacts (i.e., abiotic depletion potential, global warming potential, ozone-layer depletion potential, acidification potential, photochemical ozone creation potential, and eutrophication potential) of the manufacture and production of natural sand, natural gravel, recycled aggregate, slag aggregate, bottom ash aggregate, and waste glass aggregate were compared using information from life cycle inventory databases. Additionally, the environmental impacts and cost were evaluated when these aggregates were used to replace 30% of the fine and coarse aggregates in concrete with a design strength of 24 MPa. The environmental impact of concrete that incorporated slag aggregate as the fine aggregates or bottom ash aggregate as the coarse aggregates were lower than that of concrete that incorporated natural aggregate. However, concrete that incorporated bottom ash aggregate as the fine aggregates demonstrated relatively high environmental impacts. Based on these environmental impacts, the environmental cost was found to range from 5.88 to 8.79 USD/m3.


Author(s):  
Rina Annisa ◽  
Benno Rahardyan

Geothermal potential in Indonesia estimate can produced renewable energy 29 GW, and until 2016 it still used 5% or about 1643 MW in. From that result, about 227 MW produced by Wayang Windu geothermal power plant. The Input were raw material, energy and water. These input produced electricity as main product, by product, and also other output that related to environment i.e. emission, solid waste and waste water. All environmental impacts should be controlled to comply with environmental standard, and even go beyond compliance and perform continual improvement.  This research will use Life Cycle Assessment method based on ISO 14040 and use cradle to gate concept with boundary from liquid steam production until electricity produced, and Megawatt Hours as the functional unit. Life Cycle Inventory has been done with direct input and output in the boundary and resulted that subsystem of Non Condensable Gas and condensate production have the largest environmental impact. LCI also show that every MWh electricity produced, it needed 6.87 Ton dry steam or 8.16 Ton liquid steam. Global Warming Potential (GWP) value is 0.155 Ton CO2eq./MWh, Acidification Potential (AP) 1.69 kg SO2eq./MWh, Eutrophication Potential (EP) 5.36 gPO4 eq./MWh and land use impacts 0.000024 PDF/m2. Life Cycle Impact Assessment resulted that AP contribute 78% of environmental impact and 98% resulted from H2S Non Condensable Gas. Comparison results with another dry steam geothermal power plant show that impact potential result of the company in good position and there’s a strong relation between gross production, GWP and AP value.Keywords: Life cycle assessment; Geothermal; Continual Improvement; Global Warming Potential; Acidification Potential


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1260
Author(s):  
Namy Espinoza-Orias ◽  
Antonis Vlassopoulos ◽  
Gabriel Masset

The global food system faces a dual challenge for the decades ahead: to (re)formulate foods capable to feed a growing population while reducing their environmental footprint. In this analysis, nutritional composition, recipe, and sourcing data were analyzed alongside five environmental indicators: climate change (CC), freshwater consumption scarcity (FWCS), abiotic resource depletion (ARD), land use impacts on biodiversity (LUIB), and impacts on ecosphere/ecosystems quality (IEEQ) to assess improvement after three reformulation cycles (2003, 2010, 2018) in three extruded breakfast cereals. A life cycle assessment (LCA) was performed using life cycle inventory (LCI) composed by both primary data from the manufacturer and secondary data from usual third-party LCI datasets. Reformulation led to improved nutritional quality for all three products. In terms of environmental impact, improvements were observed for the CC, ARD, and IEEQ indicators, with average reductions of 12%, 14%, and 2% between 2003 and 2018, respectively. Conversely, the FWCS and LUIB indicators were increased by 57% and 70%, respectively. For all indicators but ARD, ingredients contributed most to the environmental impact. This study highlights the need for further focus on the selection of less demanding ingredients and improvements in agricultural practices in order to achieve environmental and nutritional improvements.


2014 ◽  
Vol 73 ◽  
pp. 63-71 ◽  
Author(s):  
Juliette Langlois ◽  
Pierre Fréon ◽  
Jean-Philippe Delgenes ◽  
Jean-Philippe Steyer ◽  
Arnaud Hélias

2014 ◽  
Vol 1025-1026 ◽  
pp. 1070-1073 ◽  
Author(s):  
Rakh Yun Kim ◽  
Sung Ho Tae ◽  
Seung Jun Roh

The purpose of this study was to deduce the major construction wastes to be managed using environmental impact assessment for construction wastes generated in the construction phase. To accomplish this, the amount of construction waste discharged in the construction phase was analyzed using loss rate and weight conversion factor in the Standard of Estimate for Construction Works. Based on the result of construction waste generation deduced, major construction wastes were extracted with consideration on 6 comprehensive environmental impacts including potential, abiotic depletion potential, acidification potential, eutrophication potential, ozone depletion potential, and photochemical ozone creation potential. As a result, 5 major building materials such as concrete, concrete block, rebar, cement and polystyrene panel were deduced as major cpmstruction wastes in construction phase.


2021 ◽  
Vol 22 (2) ◽  
pp. 147-161
Author(s):  
Rahmah Arfiyah Ula ◽  
Agus Prasetya ◽  
Iman Haryanto

ABSTRACT The primary municipal waste treatment in Tuban Regency, East Java, was landfilling, besides the small amount of the waste was turned to compost. Landfilling causes global warming, which leads to climate change due to CH4 emission. This environmental impact could be worst by the population growth that increases the amount of waste. This study aimed to evaluate the environmental impact on waste management in the Gunung Panggung landfill in Tuban Regency and its alternative scenarios using Life Cycle Assessment (LCA). Four scenarios were used in this study. They are one existing scenario and three alternative scenarios comprising landfilling, composting, and anaerobic digestion. The scope of this study includes waste transportation to waste treatment which is landfilling, composting, and anaerobic digestion (AD). The functional unit of this analysis is per ton per year of treated waste. Environmental impacts selected are global warming potential, acidification potential, and eutrophication potential. The existing waste management in Gunung Panggung landfill showed the higher global warming potential because of the emission of CO2 and cost for human health, which is 6.379.506,17 CO2 eq/year and 5,92 DALY, respectively. Scenario 3 (landfilling, composting, and AD; waste sortation 70%) showed a lower environmental impact than others, but improvements were still needed. Covering compost pile or controlling compost turning frequency was proposed for scenario 3 amendment. Keywords: environmental impact, landfill, life cycle assessment, waste management   ABSTRAK Landfill merupakan pengelolaan sampah utama di tempat pemrosesan akhir (TPA) Gunung Panggung Kabupaten Tuban. Selain landfill, pengomposan diterapkan untuk mengolah sebagian kecil sampahnya. Landfill menghasilkan gas metana yang menyebabkan pemanasan global dan memicu perubahan iklim. Pertambahan penduduk memperbanyak sampah yang perlu diolah di TPA dan dapat memperparah dampak lingkungan yang ditimbulkan. Tujuan penelitian ini adalah menilai dampak lingkungan dari pengelolaan sampah eksisting di TPA Gunung Panggung Kabupaten Tuban Jawa Timur beserta skenario alternatifnya menggunakan Life Cycle Assessment (LCA). Terdapat satu skenario eksisting dan tiga skenario alternatif pengelolaan sampah yaitu landfilling, pengomposan, dan fermentasi anaerob (anaerobic digestion). Ruang lingkup studi meliputi pengangkutan sampah, pengelolaan sampah dengan cara pengomposan, Anaerobic Digestion (AD), dan landfill. Satuan fungsional yang digunakan yakni ton sampah yang diolah per tahun. Dampak lingkungan yang dipelajari di antaranya: pemanasan global, asidifikasi, dan eutrofikasi. Dampak lingkungan skenario eksisting menunjukkan nilai tertinggi terutama pada pemanasan global (6.379.506,17 CO2eq/tahun) dan kerugian pada kesehatan manusia (5,92 DALY). Skenario alternatif 3, yang meliputi pengelolaan secara landfill, pengomposan, dan AD menunjukkan dampak lingkungan yang kecil, namun memerlukan perbaikan. Perbaikan untuk skenario 3 yaitu dengan menambahkan penutup pada tumpukan kompos atau mengontrol frekuensi pembalikan kompos untuk mengurangi emisi NH3. Kata kunci: dampak lingkungan, life cycle assessment, pengelolaan sampah, tempat pemrosesan akhir


Sign in / Sign up

Export Citation Format

Share Document