scholarly journals Characteristics of Biogas Production from Organic Wastes Mixed at Optimal Ratios in an Anaerobic Co-Digestion Reactor

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6812
Author(s):  
Young-Ju Song ◽  
Kyung-Su Oh ◽  
Beom Lee ◽  
Dae-Won Pak ◽  
Ji-Hwan Cha ◽  
...  

This study determined the optimal mixing ratio of food waste and livestock manure for efficient co-digestion of sewage sludge by applying the biochemical methane potential (BMP) test, Design Expert software, and continuous reactor operation. The BMP test of sewage sludge revealed a maximum methane yield of 334 mL CH4/g volatile solids (VS) at an organic loading rate (OLR) of 4 kg VS/(m3·d). For food waste, the maximum methane yield was 573 mL CH4/g VS at an OLR of 6 kg VS/(m3·d). Livestock manure showed the lowest methane yield. The BMP tests with various mixing ratios confirmed that a higher mixing ratio of food waste resulted in a higher methane yield, which showed improved biodegradability and an improved VS removal rate. The optimal mixing ratio of 2:1:1 for sewage sludge, food waste, and livestock manure was determined using Design Expert 10. Using continuous co-digestion reactor operation under an optimal mixing ratio, greater organic matter removal and methane yield was possible. The process stability of co-digestion of optimally mixed substrate was improved compared with that of operations with each substrate alone. Therefore, co-digestion could properly maintain the balance of each stage of anaerobic digestion reactions by complementing the characteristics of each substrate under a higher OLR.

Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


Author(s):  
Siti Mariam Sulaiman ◽  
◽  
Roslinda Seswoya ◽  

Sewage sludge and food waste; are organic wastes suitable for the anaerobic digestion. However, the digestion of sewage sludge and food waste as solely substrate is having a drawback in term of methane yield. Therefore, many researchers combined these two wastes as a co-substrate and used in co-digestion. This study focused to evaluate the anaerobic co-digestion of domestic sewage sludge (in form of primary and secondary sewage sludge) with food waste under mesophilic temperature in a batch assay. Two series of batch biochemical methane potential (BMP) test were conducted using the Automatic Methane Potential Test System (AMPTS II). Each set are labelled with BMP 1(PSS:FW) and BMP 2 (SSS:FW). The BMP tests were monitored automatically until the methane production is insignificant. Using the data observed in the laboratory, the kinetic paremeters were calculated. Also, the First-order and Modified Gompertz modeling were included to predict the anaerobic digestion performance. Finding showed that BMP 1(PSS:FW) have better performance with respect to the higher ultimate methane yield and methane production rate as compared to BMP 2 (SSS:FW). Besides, the kinetic parameters from laboratory work and modeling were slightly different. In which the kinetic paremetes from modelling is lesser. However, both modelling are well fitted to the experimental data with high correlation coefficient, R2 ranged from 0.993 to 0.997.


2021 ◽  
Vol 43 (9) ◽  
pp. 591-600
Author(s):  
Jimin Kim ◽  
Seongwon Im ◽  
Alsayed Mostafa ◽  
Om Prakash ◽  
Dong-Hoon Kim

Objectives : To mitigate greenhouse gas (GHG) emissions, our country is trying to replace fossil fuel to hydrogen (H2). H2 has higher energy yield (122 MJ/kg) than other energy sources (natural gas, coal, etc.), and is considered a clean fuel that produces only water upon combustion. The water electrolysis using renewable energy is one of the green-H2 producing methods, but its unstable characteristics depending on weather condition impede its practical application. Therefore, to establish green-H2 society, the use of waste and biomass is essential to fulfil the demand.Methods : In this study, we estimated the biohydrogen potential of organic solid wastes: food waste, livestock manure, and sewage sludge, which are the main feedstock of domestic biogas plant. For the H2 generation process, dark fermentation (DF) and steam biogas reforming (SBR) were considered.Results and Discussion : The potential amount of H2 through DF and SBR was 44,000 ton/y and 675,000 ton/y, respectively. The GHG reducing potential was estimated to be 5 million tons CO2-eq/year, but it can be lowered down to 2 million tons CO2-eq/year, considering the energy consumption during H2 generation process. Among the energy potential of produced H2, 7% and 60% is required for H2 production in DF and SBR, respectively.Conclusion : The expected biohydrogen production was 718,000 ton/y which can account for about 14% of the domestic H2 production target in 2040 (526 million tons). The main source was livestock manure (86%), and minor fraction was from food waste (10%), and sewage sludge (4%). The GHG reducing potential was estimated to be 2 million tons CO2-eq/year, considering the energy consumption during H2 generation process.


2013 ◽  
Vol 777 ◽  
pp. 139-142
Author(s):  
Li Han ◽  
Ru Ying Li ◽  
Min Ji

In order to improve the methane yield and removal efficiency of organic matters in anaerobic sludge digestion, effects of addition of food waste were investigated at mesophilic condition. Results showed that the optimal TS ratio between sewage sludge and food waste was 4:1, with a methane yield of 592.7 ml/g-VS, methane content of 66.84% and the VS removal efficiency of 31%, which were 47%, 50% and 55% higher than those of sole sludge digestion, respectively.


Author(s):  
Gahyun Baek ◽  
Danbee Kim ◽  
Jinsu Kim ◽  
Hanwoong Kim ◽  
Changsoo Lee

The management of cattle manure (CM) has become increasingly challenging because its production continues to rise, while the regulations on manure management have become increasingly stringent. In Korea, most farms produce CM as a dry mixture with lignocellulosic bedding materials (mainly sawdust), making it impractical to treat CM by anaerobic digestion. To address this problem, this study examined whether anaerobic co-digestion with food waste (FW) and pig manure (PM) could be an effective approach for the treatment of CM. The batch anaerobic digestion tests at different CM: FW: PM mixing ratios showed that more methane was produced as the FW fraction increased, and as the CM fraction decreased. The response surface models describing how the substrate mixing ratio affects the methane yield and synergistic effect (methane yield basis) were successfully generated. The models proved that the methane yield and synergistic effect respond differently to changes in the substrate mixing ratio. The maximum 30-day methane yield was predicted at 100% FW, whereas the maximum 30-day synergy index was estimated for the mixture of 47% CM, 6% FW, and 47% PM (total solids basis). The synergy index model showed that CM, FW, and PM could be co-digested without a substantial loss of their methane potential at any mixing ratio (30-day synergy index, 0.89–1.22), and that a possible antagonistic effect could be avoided by keeping the FW proportion less than 50%. The results suggest that co-digestion with PM and FW could be flexibly applied for the treatment and valorization of CM in existing anaerobic digestion plants treating FW and PM.


2018 ◽  
Vol 7 (3.23) ◽  
pp. 36 ◽  
Author(s):  
Roslinda Seswoya ◽  
Ahmad Tarmizi Abdul Karim ◽  
Nur Aiza Darnak ◽  
Muhammad Fahmi Abd Rahman

The anaerobic digestibility of a targeted substrate, measured as methane yield is conducted via biochemical methane potential (BMP). In this study, the batch BMP test was conducted using Automatic Methane Potential Test System (AMPTS II) for 25 days and focused on the methane production from the digestion of food waste (FW, in the form of raw and diluted) at inoculum to substrate ratio (I/S) ratio of 2:0 and under mesophilic temperature.  The results showed that solids (TS and VS) concentration reduced significantly due to the       dilution. The ultimate methane yields from the digestion of raw FW and diluted FW were 1891.91ml CH4/gVS and 1983.96 ml CH4/gVS respectively. This showed that the dilution significantly improved the methane yield. In addition, the lag phase of the methane yield curve for both BMP tests was less than one (1) day, showing the good biodegradability of FW. The kinetic methane production from laboratory data and Modified Gompertz modelling fitted well. However, the kinetic equation parameters such as Mo, Rm and l from the model were slightly lower based on the observation of the laboratory data. 


2019 ◽  
Vol 11 (8) ◽  
pp. 4225-4234
Author(s):  
Mohamed El-Qelish ◽  
Pritha Chatterjee ◽  
Paolo Dessì ◽  
Marika Kokko ◽  
Fatma El-Gohary ◽  
...  

2021 ◽  
Vol 290 ◽  
pp. 112457
Author(s):  
Davidraj Johnravindar ◽  
Jonathan W.C. Wong ◽  
Debkumar Chakraborty ◽  
Govardhan Bodedla ◽  
Guneet Kaur

Sign in / Sign up

Export Citation Format

Share Document