scholarly journals Research on Test and Logging Data Quality Classification for Gas–Water Identification

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6991
Author(s):  
Zehou Xiang ◽  
Kesai Li ◽  
Hucheng Deng ◽  
Yan Liu ◽  
Jianhua He ◽  
...  

Tight sandstone oil and gas reservoirs are widely distributed, rich in resources, with a bright prospect for exploration and development in China. Due to multiple evolutions of the structure and sedimentary system, the gas–water distribution laws are complicated in tight sandstone gas reservoirs in the northern Ordos area. It is difficult to identify gas and water layers in the study area. In addition, in the development and production, various factors, such as the failure of the instrument, the difference in construction parameters (injected sand volume, flowback rate), poor test results, and multi-layer joint testing lead to unreliable gas test results. Then, the inaccurate logging responses will be screened by unreliable gas test results for different types of fluids. It is hard to make high-precision fluid logging identification charts or models. Therefore, this article combines gas logging, well logging, testing and other data to research the test and logging data quality classification. Firstly, we select reliable standard samples through the initial gas test results. Secondly, we analyze the four main factors which affect the inaccuracy of gas test results. Thirdly, according to these factors, the flowback rate and the sand volume are determined as the main parameters. Then, we establish a recognition chart of injected sand volume/gas–water ratio. Finally, we proposed an evaluation method for testing quality classification. It provides a test basis for the subsequent identification of gas and water through the second logging interpretation. It also provides a theoretical basis for the exploration and evaluation of tight oil and gas reservoirs.

AAPG Bulletin ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 363-377 ◽  
Author(s):  
Lianbo Zeng ◽  
Hui Su ◽  
Xiaomei Tang ◽  
Yongmin Peng ◽  
Lei Gong

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1122
Author(s):  
Enli Wang ◽  
Junduo Zhang ◽  
Guoliang Yan ◽  
Qing Yang ◽  
Wanjin Zhao ◽  
...  

Fault detection is important to seismic interpretation, especially for tight oil and gas reservoirs. Generally speaking, large-scale faults can be accurately imaged and are easy to detect by conventional methods, but the concealed ones in low-amplitude structural regions are difficult to find. In these areas, the scale and displacement of concealed faults are usually very small. Due to the good uniform and weak amplitude disturbances in the seismic events, the traditional discontinuity attributes extracted from seismic data are always not effective. This is because the discontinuous features of large faults are very significant, and the weak anomalies caused by hidden faults are very close to the continuous background. This paper takes a tight sandstone reservoir in the Ordos Basin of China as an example to explore the detection method of subtle faults in low-amplitude structural areas. With the phase congruency analysis method, we extract edge features from the post-stack coherence attributes to identify hidden faults. Practice shows that this idea has outstanding performance in mining hidden fracture features and improving the accuracy of fracture recognition. The results successfully predict a shear fault zone in the northeast of the work area, find a new fracture zone in the center of the survey and a series of hidden faults in non-target strata. It would be beneficial to extend the strata and area of oil and gas reservoirs.


2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Mostafa Alizadeh ◽  
Zohreh Movahed ◽  
Radzuan Junin ◽  
Rahmat Mohsin ◽  
Mehdi Alizadeh ◽  
...  

The purpose of modelling the fractures is to create simulation properties with the power to predict the reservoir behaviour. Petrel software is one of the best softwares in the market that can do this task very well, but there is no available educational paper for every researcher. Therefore, in this work, a fracture modelling job was done in one of the most important Iranian fields using Petrel software and image log data. The purpose of this work was  to determine the new information of the fractures in Gachsaran field and also to prepare a valuable educational paper for other researchers who are interested to learn about the fracture modelling. This work revealed that in this field, the longitudinal fractures had been parallel to minimum stress (Zagros trend), fracture intensity was the nearest to the major fault and northern flank, fracture porosity was 0-7%, fracture permeability was 0-6000 MD, and more valuable information is provided in this paper.


Sign in / Sign up

Export Citation Format

Share Document