scholarly journals Paleoenvironment and Organic Matter Accumulation Mechanism of Marine–Continental Transitional Shales: Outcrop Characterizations of the Carboniferous–Permian Strata, Ordos Basin, North China

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7445
Author(s):  
Leifu Zhang ◽  
Qun Zhao ◽  
Sizhong Peng ◽  
Zhen Qiu ◽  
Congjun Feng ◽  
...  

In the Carboniferous–Permian period, several organic-rich black shales were deposited in a marine–continental transitional environment in the Linfen area on the eastern margin of the Ordos Basin. Integrated sedimentological and organic geochemical analyses are performed on an outcrop in order to clarify the relationship between paleoenvironment and organic matter accumulation. The results of this study show that the marine–continental transitional strata of the Upper Carboniferous Benxi Formation to Lower Permian Taiyuan and Shanxi Formation exposed in the Linfen area are composed of sandstone, shale, coal, and limestone. Total organic carbon (TOC) contents of the studied samples were mainly distributed in the range of 0.59%–35.4%, with an average of 7.32%. From Benxi Formation to Shanxi formation, the humidity gradually increased, and the climate gradually changed from hot and humid to warm and humid during Carboniferous to Permian. The deposition of the Shanxi Formation ended with the climate returning to hot and humid, having an oxic-suboxic conditions and a high paleoproductivity. Paleoredox conditions and paleoproductivity are the two vital factors controlling the formation of organic matter in black shales. The transitional environment characterized by oxic-suboxic, relatively high deposition rate, and various source of organic matter, although different from the marine environment, provides a good material basis for the deposition of organic-rich shales.

2017 ◽  
Vol 5 (2) ◽  
pp. SF63-SF79 ◽  
Author(s):  
Robert G. Loucks ◽  
Stephen C. Ruppel ◽  
Xiangzeng Wang ◽  
Lucy Ko ◽  
Sheng Peng ◽  
...  

Continental Upper Triassic Yanchang “black shales” in the southeastern Ordos Basin have been proven to be unconventional gas reservoirs. Organic-matter-lean and organic-matter-rich argillaceous mudstones form reservoirs that were deposited in a deeper water lacustrine setting during lake highstands. In the stratified lake, the bottom waters were dysaerobic to anoxic. This low-energy and low-oxygen lake-bottom setting allowed types II and III organic matter to accumulate. Interbedded with the argillaceous mudstones are argillaceous arkosic siltstones deposited by gravity-flow processes. Rock samples from the Yanchang Chang 7–9 members are very immature mineralogically. Mineral grains are predominantly composed of relatively equal portions of quartz and feldspar. The high clay-mineral content, generally greater than 40%, has promoted extensive compaction of the sediments, permitting the ductile material to deform and occlude interparticle pores. Furthermore, this high clay-mineral content does not favor hydraulic fracturing of the mudstone reservoir. The pore network within the mudstones is dominated by intraparticle pores and a lesser abundance of organic-matter pores. Interparticle pores are rare. The mean Gas Research Institute (GRI) crushed-rock porosity is 4.2%. Because the pore network is dominated by poorly connected intraparticle pores, permeability is very low (the GRI-calculated geometric mean permeability = 9.9 nd). The dominance of intraparticle pores creates a very poor correlation between GRI porosity and GRI permeability. Several methods of porosity analysis (GRI crushed rock, nitrogen adsorption, and point count) were conducted on each samples, and the results were compared. There is no significant correlation between the three methods, implying that each method measures different pore sizes or types. There is also no relationship between the porosity and permeability and total organic carbon. Much of the mature (peak oil window) organic matter is nonporous, suggesting that it is of type III. Most of the organic-matter pores are in migrated solid bitumen. Overall, the samples analyzed have low porosity and permeability for mudrocks.


2020 ◽  
pp. 014459872097924
Author(s):  
Jingyi Wei ◽  
Yongli Wang ◽  
Gen Wang ◽  
Zhifu Wei ◽  
Wei He

Marine–continental transitional strata were widely developed in the Ordos Basin in Upper Carboniferous - Lower Permian. The Taiyuan - Shanxi Formation possesses promising shale gas exploration layers. Shale samples from two drilling wells of Shanxi-Taiyuan Formation in Shilou and Xixian, Ordos Basin, were investigated to study their carbon–sulfur contents and distribution characteristics of organic components using carbon/sulfur analyzer and gas chromatography–mass spectroscopy. Using results of total organic carbon analyses, Rock-Eval pyrolysis, X-ray diffraction analysis, shale gas desorption experiments, and other relevant experimental data, the shale samples were comprehensively analyzed. The exploitability of the shale in the study area was evaluated. The Shanxi-Taiyuan Shale in the Shilou and Xixian areas was characterized by high total organic carbon contents of 7.1% and 2.1% and high Tmax values of 499 and 505 °C, respectively. The organic matter of the shale is types II2 and III. Moreover, biomarker parameters including n-alkanes, Paq, Pwax, average carbon chain length, and the ternary diagram of C27-C28-C29 steranes show the organic matter constituted terrestrial higher plants and aquatic low biological algae. Multiple n-alkane parameters show the organic matter input in the Shilou area is mainly derived from terrestrial higher plants. The Pr/Ph value and trace element indicators show the deposition environment is dominated by weak oxidation–reduction conditions. A shale gas desorption experiment shows the average desorbed gas contents of the shale samples in the Shilou and Xixian areas were 1.79 and 0.37 m3/t, respectively. The organic matter content determined the differences in shale gas properties between the two areas in Ordos Basin. The composition and content of inorganic minerals affect the reservoir physical properties. According to the analyses, the shale in the Shilou area has good shale gas reservoir characteristics in terms of desorbed gas content and the above-mentioned geochemical parameters. Furthermore, the Shanxi shale has good potential for shale gas industrial exploitation.


Sign in / Sign up

Export Citation Format

Share Document