scholarly journals DC Communities: Transformative Building Blocks of the Emerging Energy Infrastructure

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7730
Author(s):  
Maximiliano Lainfiesta Herrera ◽  
Hassan S. Hayajneh ◽  
Xuewei Zhang

Serious environmental concerns call for revolutionary solutions to cope with the harmful effects of the conventional energy landscape. Therefore, residential and commercial customers require cleaner and more reliable energy sources as they become more dependent on energy for daily and critical needs. In this case, transitioning to a cleaner energy economy is of paramount importance for both the environment and the utilities as well as the end-users. The desired transformation will require the deployment of massive amounts of clean energy sources. Many of these resources, such as solar photovoltaic (PV), provide electricity in the form of direct current (DC) that enables the return of DC grids to the electric power arena. The electric system has slowly transitioned to DC, mainly on the demand side. In recent years, modern electronic devices, lighting systems, and an increased number of appliances (≈22% of the residential and commercial loads) have adopted DC systems. Studies suggest that DC loads would account for more than 50% of the available loads in the next few years. Furthermore, the growing proliferation of electric vehicles influx is another example of a successful DC application. From this perspective, the viability of returning to the DC distribution system in the form of DC community grids is explored. We start by defining the DC community grid, which is followed by introducing the benefits of adopting DC at the distribution level. Finally, a summarizing outlook of successful pilot cases, projections of DC community deployment, barriers and concerns, strategies to address barriers and concerns, and suggestions for future research directions are presented. This perspective could shed new light on the building blocks of the transformed energy landscape for various stakeholders.

Cyber Crime ◽  
2013 ◽  
pp. 918-935
Author(s):  
Xunhua Wang ◽  
Ralph Grove ◽  
M. Hossain Heydari

In recent years, computer and network-based voting technologies have been gradually adopted for various elections. However, due to the fragile nature of electronic ballots and voting software, computer voting has posed serious security challenges. This chapter studies the security of computer voting and focuses on a cryptographic solution based on mix-nets. Like traditional voting systems, mix-net-based computer voting provides voter privacy and prevents vote selling/buying and vote coercion. Unlike traditional voting systems, mix-net-based computer voting has several additional advantages: 1) it offers vote verifiability, allowing individual voters to directly verify whether their votes have been counted and counted correctly; 2) it allows voters to check the behavior of potentially malicious computer voting machines and thus does not require voters to blindly trust computer voting machines. In this chapter, we give the full details of the building blocks for the mix-net-based computer voting scheme, including semantically secure encryption, threshold decryption, mix-net, and robust mix-net. Future research directions on secure electronic voting are also discussed.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Himanshu Jain ◽  
Bilal Ahmad Bhatti ◽  
Tianying Wu ◽  
Barry Mather ◽  
Robert Broadwater

Integrated transmission-and-distribution (T&D) modeling is a new and developing method for simulating power systems. Interest in integrated T&D modeling is driven by the changes taking place in power systems worldwide that are resulting in more decentralized power systems with increasingly high levels of distributed energy resources. Additionally, the increasing role of the hitherto passive energy consumer in the management and operation of power systems requires more capable and detailed integrated T&D modeling to understand the interactions between T&D systems. Although integrated T&D modeling has not yet found widespread commercial application, its potential for changing the decades-old power system modeling approaches has led to several research efforts in the last few years that tried to (i) develop algorithms and software for steady-state and dynamic modeling of power systems and (ii) demonstrate the advantages of this modeling approach compared with traditional, separated T&D system modeling. In this paper, we provide a review of integrated T&D modeling research efforts and the methods employed for steady-state and dynamic modeling of power systems. We also discuss our current research in integrated T&D modeling and the potential directions for future research. This paper should be useful for power systems researchers and industry members because it will provide them with a critical summary of current research efforts and the potential topics where research efforts are needed to further advance and demonstrate the utility of integrated T&D modeling.


Author(s):  
Xunhua Wang ◽  
Ralph Grove ◽  
M. Hossain Heydari

In recent years, computer and network-based voting technologies have been gradually adopted for various elections. However, due to the fragile nature of electronic ballots and voting software, computer voting has posed serious security challenges. This chapter studies the security of computer voting and focuses on a cryptographic solution based on mix-nets. Like traditional voting systems, mix-net-based computer voting provides voter privacy and prevents vote selling/buying and vote coercion. Unlike traditional voting systems, mix-net-based computer voting has several additional advantages: 1) it offers vote verifiability, allowing individual voters to directly verify whether their votes have been counted and counted correctly; 2) it allows voters to check the behavior of potentially malicious computer voting machines and thus does not require voters to blindly trust computer voting machines. In this chapter, we give the full details of the building blocks for the mix-net-based computer voting scheme, including semantically secure encryption, threshold decryption, mix-net, and robust mix-net. Future research directions on secure electronic voting are also discussed.


2021 ◽  
pp. 014920632110450
Author(s):  
Liang Chen ◽  
Tony W. Tong ◽  
Shaoqin Tang ◽  
Nianchen Han

The burgeoning digital-platforms literature across multiple business disciplines has primarily characterized the platform as a market or network. Although the organizing role of platform owners is well recognized, the literature lacks a coherent approach to understanding organizational governance in the platform context. Drawing on classic organizational governance theories, this paper views digital platforms as a distinct organizational form where the mechanisms of incentive and control routinely take center stage. We systematically review research on digital platforms, categorize specific governance mechanisms related to incentive and control, and map a multitude of idiosyncratic design features studied in prior research onto these mechanisms. We further develop an integrative framework to synthesize the review and to offer novel insights into the interrelations among three building blocks: value, governance, and design. Using this framework as a guide, we discuss specific directions for future research and offer a number of illustrative questions to help advance our knowledge about digital platforms’ governance mechanisms and design features.


2002 ◽  
Vol 01 (01) ◽  
pp. 1-39 ◽  
Author(s):  
PEIDONG YANG ◽  
YIYING WU ◽  
RONG FAN

One-dimensional (1D) nanostructures are ideal systems for investigating the dependence of electrical transport, optical properties and mechanical properties on size and dimensionality. They are expected to play an important role as both interconnects and functional components in the fabrication of nanoscale electronic and optoelectronic devices. This article presents an overview of current research activities that center on nanowires whose lateral dimensions fall anywhere in the range of 1–200 nm. It is organized into three parts: The first part discusses various methods that have been developed for generating nanowires with tightly controlled dimensions, orientations, and well-defined properties. The second part highlights a number of strategies that are being developed for the hierarchical assembly of nanowire building blocks. The third part surveys some of the novel physical properties (e.g., optical, electrical, and mechanical) of these nanostructures. Finally, we conclude with some personal perspectives on the future research directions in this field.


Author(s):  
Durga D Poudel

Energy independence and sustainable renewable energy sources are the two main components of energy security for Nepal. More than 2/3rd of energy consumed in Nepal comes from biofuels and waste and about 1/4th of energy consumed comes from coal and petroleum products. With increasing number of motor vehicles and rising demand for cooking gas, Nepal’s coal and petroleum import bills in recent years have reached over Rs. 200 billion. With its vast water resources, Nepal has a great potential for energy independence and sustainability and achieve energy security. Nepal’s current 1,689 MW hydroelectricity capacity is expected to reach over 5,000 MW in next three to five years, which means Nepal will have a large amount of clean energy in the market. This increased hydropower production will also require an increased domestic consumption by making hydroelectricity affordable, reliable, and high-quality energy by improving its distribution system. Nepal also has a very high potential for solar power, which need to be harnessed and brought to the national grid. Nepal needs to harness all energy sources, which consist of hydropower, solar power, wind power, biofuels, and biogas, in a sustainable way for its energy independence and security. Because Nepal is in a geologically active and natural disasters prone area, it is critical to ensure ecological balance of Asta-Ja elements, Nepali letter, Jal (water), Jamin (land), Jungle (forest), Jadibuti (medicinal and aromatic plants), Janashakti (manpower), Janawar (animal), Jarajuri (crop plants) and Jalabayu (climate) while developing energy resources. Asta-Ja Framework serves as the connecting bridge between the energy resources and the end users. Strategic planning for comprehensive energy development considering ecological balance of Asta-Ja resources, decarbonization and electrification of energy end uses, improvement of energy infrastructures, continuous monitoring and evaluation of energy sector, and development of hydropower plants and alternative energy sources such as solar and wind is suggested for energy security in Nepal.


2020 ◽  
Vol 2020 (2) ◽  
pp. 147-160
Author(s):  
Viktor Klavdienko

The article explores the main trends and features of renewable energy development in various countries of the world in the context of modern transformation of the global energy economy - the transformation of the energy system based on a widespread use of renewable energy sources and the generation of cheaper and “clean” energy. The author focuses on wind and solar energy, considers the factors of accelerated growth of these areas of renewable energy defines funding and the main directions of R&D and discloses innovative technological transformations in these industries. The paper analyzes the dynamics in the costs of generating electricity based on the use of wind and solar radiation in various countries and identifies a steady downward trend in reducing these costs. Based on the analysis, the author presents a vision of existing problems and prospects for the transformation of electric power industry in favor of renewable energy sources.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3521
Author(s):  
Orlando Valarezo ◽  
Tomás Gómez ◽  
José Pablo Chaves-Avila ◽  
Leandro Lind ◽  
Mauricio Correa ◽  
...  

To identify the trends in new flexibility markets, a set of market and aggregator platforms were selected and compared. The analyzed initiatives are relevant to consider alternative designs for European electricity markets. This review proposes a common methodology for analyzing these market models by comparing their description, market structure, market timing, and implementation. Furthermore, a range of policy implications and future research directions towards implementing these markets are presented. The results provide compelling evidence that the new market models represent a promising business with technical and economic justification, as they incentivize the uptake of flexibility from distributed resources by providing services to Distribution System Operators (DSOs) in coordination with Transmission System Operators (TSOs). Moreover, the interactions between these new market platforms and existing markets are of particular interest, and the contributions from aggregator platforms are also relevant to enhance the political vision of empowering the customers through their active participation in markets.


Sign in / Sign up

Export Citation Format

Share Document