scholarly journals Elastic Energy Management Algorithm Using IoT Technology for Devices with Smart Appliance Functionality for Applications in Smart-Grid

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 109
Author(s):  
Piotr Powroźnik ◽  
Paweł Szcześniak ◽  
Krzysztof Piotrowski

Currently, ensuring the correct functioning of the electrical grid is an important issue in terms of maintaining the normative voltage parameters and local line overloads. The unpredictability of Renewable Energy Sources (RES), the occurrence of the phenomenon of peak demand, as well as exceeding the voltage level above the nominal values in a smart grid makes it justifiable to conduct further research in this field. The article presents the results of simulation tests and experimental laboratory tests of an electricity management system in order to reduce excessively high grid load or reduce excessively high grid voltage values resulting from increased production of prosumer RES. The research is based on the Elastic Energy Management (EEM) algorithm for smart appliances (SA) using IoT (Internet of Things) technology. The data for the algorithm was obtained from a message broker that implements the Message Queue Telemetry Transport (MQTT) protocol. The complexity of selecting power settings for SA in the EEM algorithm required the use of a solution that is applied to the NP difficult problem class. For this purpose, the Greedy Randomized Adaptive Search Procedure (GRASP) was used in the EEM algorithm. The presented results of the simulation and experiment confirmed the possibility of regulating the network voltage by the Elastic Energy Management algorithm in the event of voltage fluctuations related to excessive load or local generation.

Author(s):  
Fouad Kamel ◽  
Marwan Marwan

The chapter describes a dynamic smart grid concept that enables electricity end-users to be acting on controlling, shifting, or curtailing own demand to avoid peak-demand conditions according to information received about electricity market conditions over the Internet. Computer-controlled switches are used to give users the ability to control and curtail demand on a user’s premises as necessary, following a preset user’s preferences. The computerized switching provides the ability to accommodate local renewable energy sources as available. The concept offers further the ability to integrate charging electrical vehicles during off-peak periods, helping thus substantially improving the utilization of the whole electricity system. The approach is pursuing improved use of electrical energy associated with improved energy management, reduced electricity prices and reduced pollution caused by excessive use of combustion engine in transport. The technique is inherently restricted to take effect in frame of energy tariff regimes based on real-time price made to encourage and reward conscious users being proactively participating in holistic energy management strategies.


Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


2020 ◽  
Vol 29 (16) ◽  
pp. 2030014
Author(s):  
Sumeet Kumar Wankhede ◽  
Priyanka Paliwal ◽  
Mukesh K. Kirar

The world is witnessing a transformation from the conventional electrical grid into the smart grid. The smart grid can provide an effective solution to alarming problems associated with a conventional grid with increased reliability, efficiency, and sustainability. Integration of distributed energy resources (DERs) comprising of renewable energy sources (RESs) is a vital component of the smart grid. DERs not only can provide a viable solution for environmental concerns arising due to conventional fossil fuel-based plants, but can also contribute towards the system reliability. However, the integration of DERs is associated with several challenges.  Thus, the successful deployment of DERs in smart grid framework calls for a comprehensive analysis. This paper presents an exhaustive review of various challenges associated with increased penetration of DERs. An organized classification of various technical challenges along with their mitigation measures has been critically reviewed. Smart inverters equipped with advanced control structure are emerging as a potential solution to address these challenges effectively. Hence, a review of smart inverter along with its functional capabilities has also been discussed in this paper.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4288 ◽  
Author(s):  
Md Mamun Ur Rashid ◽  
Fabrizio Granelli ◽  
Md. Alamgir Hossain ◽  
Md. Shafiul Alam ◽  
Fahad Saleh Al-Ismail ◽  
...  

The steady increase in energy demand for residential consumers requires an efficient energy management scheme. Utility organizations encourage household applicants to engage in residential energy management (REM) system. The utility’s primary goal is to reduce system peak load demand while consumer intends to reduce electricity bills. The benefits of REM can be enhanced with renewable energy sources (RESs), backup battery storage system (BBSS), and optimal power-sharing strategies. This paper aims to reduce energy usages and monetary cost for smart grid communities with an efficient home energy management scheme (HEMS). Normally, the residential consumer deals with numerous smart home appliances that have various operating time priorities depending on consumer preferences. In this paper, a cost-efficient power-sharing technique is developed which works based on priorities of appliances’ operating time. The home appliances are sorted on priority basis and the BBSS are charged and discharged based on the energy availability within the smart grid communities and real time energy pricing. The benefits of optimal power-sharing techniques with the RESs and BBSS are analyzed by taking three different scenarios which are simulated by C++ software package. Extensive case studies are carried out to validate the effectiveness of the proposed energy management scheme. It is demonstrated that the proposed method can save energy and reduce electricity cost up to 35% and 45% compared to the existing methods.


2020 ◽  
Vol 181 ◽  
pp. 03002
Author(s):  
Fabien Mukundufite ◽  
Jean Marie Vianney Bikorimana ◽  
Etienne Ntagwirumugara ◽  
Alex Kyaruzi

Many scholars have been focusing on the energy management by Integrating a smart grid into a conventional electrical grid. They have showed that to meet a certain power demand of the consumers, using energy management, the electric utility can turn on some generators, which may have the least operation cost, while the generators with high operation cost are left to supply extra load demand in specific peak periods. Henceforth, the operation cost of its generation units is minimized. The issue remains at a level of relating the energy management to CO2 emission. The present paper briefly discusses the Rwandan electrical network that still integrates the use of diesel generators. It estimates the amount of CO2 emission that can be avoided once a PV system is integrated into the electrical network. The paper as well proposes an algorithm for energy management with consideration of CO2 emission.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2010 ◽  
Author(s):  
Sunyong Kim ◽  
Hyuk Lim

A smart grid facilitates more effective energy management of an electrical grid system. Because both energy consumption and associated building operation costs are increasing rapidly around the world, the need for flexible and cost-effective management of the energy used by buildings in a smart grid environment is increasing. In this paper, we consider an energy management system for a smart energy building connected to an external grid (utility) as well as distributed energy resources including a renewable energy source, energy storage system, and vehicle-to-grid station. First, the energy management system is modeled using a Markov decision process that completely describes the state, action, transition probability, and rewards of the system. Subsequently, a reinforcement-learning-based energy management algorithm is proposed to reduce the operation energy costs of the target smart energy building under unknown future information. The results of numerical simulation based on the data measured in real environments show that the proposed energy management algorithm gradually reduces energy costs via learning processes compared to other random and non-learning-based algorithms.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 900 ◽  
Author(s):  
Ahsen Ulutas ◽  
Ismail Hakki Altas ◽  
Ahmet Onen ◽  
Taha Selim Ustun

With constant population growth and the rise in technology use, the demand for electrical energy has increased significantly. Increasing fossil-fuel-based electricity generation has serious impacts on environment. As a result, interest in renewable resources has risen, as they are environmentally friendly and may prove to be economical in the long run. However, the intermittent character of renewable energy sources is a major disadvantage. It is important to integrate them with the rest of the grid so that their benefits can be reaped while their negative impacts can be mitigated. In this article, an energy management algorithm is recommended for a grid-connected microgrid consisting of loads, a photovoltaic (PV) system and a battery for efficient use of energy. A model predictive control-inspired approach for energy management is developed using the PV power and consumption estimation obtained from daylight solar irradiation and temperature estimation of the same area. An energy management algorithm, which is based on a neuro-fuzzy inference system, is designed by determining the possible operating states of the system. The proposed system is compared with a rule-based control strategy. Results show that the developed control algorithm ensures that microgrid is supplied with reliable energy while the renewable energy use is maximized.


2017 ◽  
pp. 1669-1694
Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


2013 ◽  
pp. 1614-1639
Author(s):  
Fouad Kamel ◽  
Marwan Marwan

The chapter describes a dynamic smart grid concept that enables electricity end-users to be acting on controlling, shifting, or curtailing own demand to avoid peak-demand conditions according to information received about electricity market conditions over the Internet. Computer-controlled switches are used to give users the ability to control and curtail demand on a user’s premises as necessary, following a preset user's preferences. The computerized switching provides the ability to accommodate local renewable energy sources as available. The concept offers further the ability to integrate charging electrical vehicles during off-peak periods, helping thus substantially improving the utilization of the whole electricity system. The approach is pursuing improved use of electrical energy associated with improved energy management, reduced electricity prices and reduced pollution caused by excessive use of combustion engine in transport. The technique is inherently restricted to take effect in frame of energy tariff regimes based on real-time price made to encourage and reward conscious users being proactively participating in holistic energy management strategies.


Sign in / Sign up

Export Citation Format

Share Document