scholarly journals Enhancing PV Hosting Capacity Using Voltage Control and Employing Dynamic Line Rating

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 134
Author(s):  
Eshan Karunarathne ◽  
Akila Wijethunge ◽  
Janaka Ekanayake

Photovoltaic (PV) system installation has encouraged to be further expedited to minimize climate change and thus, rooftop solar PV systems have been sparkled in every corner of the world. However, due to technological constraints linked to voltage and currents, the PV hosting capacity has been substantially constrained. Therefore, this paper proposes a competent approach to maximize PV hosting capacity in a low voltage distribution network based on voltage control and dynamic line rating of the cables. Coordinated voltage control is applied with an on-load tap changing transformer, and reactive power compensation and active power curtailment of PV inverters. A case study with probabilistic and deterministic assessments is carried out on a real Sri Lankan network to show how the PV hosting capacity is constrained. The findings revealed the capability of integrated voltage control schemes and dynamic line rating in maximizing hosting capacity. The study is expanded by incorporating the PV rephasing approach in conjunction with the aforementioned control techniques, and the effectiveness of PV-rephasing is clearly demonstrated. When compared to voltage control and conductor static rating, the combined rephasing, voltage control, and DLR yielded a 60% increase in PV hosting capacity.

Author(s):  
Feng Zhang ◽  
Xiaolong Guo ◽  
Xiqiang Chang ◽  
Guowei Fan ◽  
Lianger Chen ◽  
...  

Author(s):  
Mithun Mohan Nagabhairava ◽  
Yin Ma ◽  
Kelly Kissock

Rising electricity prices, falling photovoltaic (PV) system costs and the availability of net metering are encouraging consumers to consider PV systems. However, the variety and complexity of utility rate structures can be a formidable barrier to consumers in making economically informed decisions. This paper describes a methodology to integrate Green Button energy use data from electric utilities, with solar and temperature data to analyze the economics of PV systems, with and without battery storage, under different rate structures. Case study results indicate that the economics of PV systems are nearly identical under PG&E’s time-of-use and inverted-block rate structures, and are more favorable than under flat rate structures with the same average annual cost per kWh. However, simple paybacks remain well short of the typical life of PV systems. The simple payback for the addition of batteries is initially competitive with PV systems, but rises rapidly as battery size is increased.


2016 ◽  
Vol 839 ◽  
pp. 54-58 ◽  
Author(s):  
Piyadanai Pachanapan ◽  
Phudit Inthai

A micro static var compensator (µSVC) is introduced in this work to prevent the over-voltage problems in radial distribution networks with high number of rooftop photovoltaic (PV) connections. The µSVC is aimed to use in the PV system that has the fixed-power factor inverter, which cannot provide the active voltage controllability. The µSVC is a small shunt compensator installed parallel with the PV system and providing the automatic reactive power support to deal with the dynamic voltage variations at the point of common coupling. Two reactive power control methods, Q(P) and Q(V), can be employed into each µSVC depending on the location of PV systems. Moreover, the coordinated reactive power control among µSVCs, without communication system requirement, is presented for enhancing the Volt-Var controllability to the group of PV systems located in the same feeder. The dynamic voltage control performances are examined on simulation in DIgSILENT PowerFactory software. The results showed that the proposed control method can mitigate the rise of voltage level sufficiently.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1458
Author(s):  
Ziyu Wang ◽  
Guangya Yang

Driven by the Energy Strategy 2050 of Denmark, renewable energy sources (RESs) are increasingly integrated into the Danish power grid. Solar photovoltaic (PV) plants play an important role in this process. This paper conducted a study to investigate the impacts of residential solar PV integration in the distribution grid on voltage security and grid loss based on the 10 kV distribution grid in Bornholm. Three case studies are performed to test three different reactive power control methods, i.e., PF(P), constant PF and constant Q, at different penetration levels. The assessment of the impacts of PV integration and different control methods are done in the DIgSILENT PowerFactory. It was found that PV integration can contribute to reducing the loss of the system, increased overvoltage in buses and overload in transformers, and 40% penetration at the low voltage is considered to be an optimal level based on the result. PF(P) control gives the best performance among all three methods under the current grid codes. With constant PF control, it was found that the system loss can be significantly reduced if the PV systems operate with a power factor of 0.9 leading, which is not the norm of the current Danish grid code.


Author(s):  
Vaibhav S. Raut

Photovoltaic (PV) systems propose attractive alternative source of generation because these can be placed near to the load centers when compared with other renewable source of generation. It is therefore rooftop PV is the center of attraction for majority PV systems. The rooftop PV system in general is grid connected and supports the off-grid load with battery backup. The designed system must ensure total evacuation of generated power and with high efficiency of conversion, and utilizes the resource adequately to maximize the utilization of energy. This paper proposes single phase synchronous reference frame (SRF) theory based current controlled PWM controller for the voltage source converter (VSC) to realize maximum generated power evacuation by maintaining the DC link voltage constant without battery support, low THD sinusoidal line synchronized current output, and limited reactive power compensation based on the unutilized capacity of the inverter. PV power is being tracked always at MPP through incremental conductance (IC) method. MATLAB based simulation results shows the efficient working of rooftop PV with proposed control algorithms in grid connected mode with limited reactive power conditioning.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29449-29457
Author(s):  
Subhash Chandra ◽  
Arvind Yadav ◽  
Mohd Abdul Rahim Khan ◽  
Mukesh Pushkarna ◽  
Mohit Bajaj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document