scholarly journals Characterization of Supraharmonic Emission from Three Different Electric Vehicle Charging Infrastructures in Time and Frequency Domain

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 394
Author(s):  
Tim Streubel ◽  
Christoph Kattmann ◽  
Adrian Eisenmann ◽  
Krzysztof Rudion

With the recent proliferation of electric vehicles (EVs), maintaining power quality within acceptable limits in future distribution grids will become a challenging task. A specific concern is the spread of Supraharmonics in the range from 2 to 150 kHz, generated by modern power electronic devices. In this paper, the long term Supraharmonic distortion from three differently sized electric vehicle charging infrastructures is analyzed in frequency and time domain. At the monitored sites several interruptions of EV charging processes were observed due to poor power quality. It was found that vehicles disconnect when exposed to high levels of harmonic distortion. Moreover, the impact of the charging EVs on the Supraharmonic distortion and the interaction with the background distortion for the individual sites is discussed. Results show that a general increase in Supraharmonics emission can be expected due to the rising number of EVs. However, measurements also indicate that damping effects can occur for certain load configurations.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3905
Author(s):  
Muhandiram Arachchige Subodha Tharangi Ireshika ◽  
Ruben Lliuyacc-Blas ◽  
Peter Kepplinger

If left uncontrolled, electric vehicle charging poses severe challenges to distribution grid operation. Resulting issues are expected to be mitigated by charging control. In particular, voltage-based charging control, by relying only on the local measurements of voltage at the point of connection, provides an autonomous communication-free solution. The controller, attached to the charging equipment, compares the measured voltage to a reference voltage and adapts the charging power using a droop control characteristic. We present a systematic study of the voltage-based droop control method for electric vehicles to establish the usability of the method for all the currently available residential electric vehicle charging possibilities considering a wide range of electric vehicle penetrations. Voltage limits are evaluated according to the international standard EN50160, using long-term load flow simulations based on a real distribution grid topology and real load profiles. The results achieved show that the voltage-based droop controller is able to mitigate the under voltage problems completely in distribution grids in cases either deploying low charging power levels or exhibiting low penetration rates. For high charging rates and high penetrations, the control mechanism improves the overall voltage profile, but it does not remedy the under voltage problems completely. The evaluation also shows the controller’s ability to reduce the peak power at the transformer and indicates the impact it has on users due to the reduction in the average charging rates. The outcomes of the paper provide the distribution grid operators an insight on the voltage-based droop control mechanism for the future grid planning and investments.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3951
Author(s):  
Joanna Baraniak ◽  
Jacek Starzyński

Recently, there has been dynamic development of electromobility. This trend is predicted to grow exponentially, which will contribute to the creation of an extensive infrastructure of electric car charging points. For distribution network operators, this implies that in addition to the increase in demand for power and electricity, the number of converter systems connected to their networks will also increase. It is therefore necessary to determine the potential impact of electric vehicle charging systems on electricity quality. To this end, the authors of the present study developed simulation models based on measurements of the actual charger and the data provided by the manufacturers of the equipment and using simulation models widely described in the literature. On the basis of the study results, the impact of electric car chargers on electric power quality was assessed, and attention was given to the opportunities offered by the development of charging systems with vehicle-to-grid (V2G) functionality. Changes in technical standards aimed at selecting power supply cables by considering their heating under the influence of higher current harmonics generated by converter systems were proposed.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


2015 ◽  
Vol 734 ◽  
pp. 852-857
Author(s):  
Cheng Gong ◽  
Rui Shi ◽  
Zhong Jun Chi ◽  
Bao Qun Zhang ◽  
Long Fei Ma ◽  
...  

In order to improve the power quality problems caused by electric vehicle charging equipment, this paper put forward the research on Application of Unified Power Quality Controller (UPQC) in the charging field. Based on the mathematical model of UPQC, current control unit with state feedback single loop PI controller and voltage control unit based on dual PI loop controller are designed. Based on the mathematical model, the design reference parameters are derived. Finally, a UPQC prototype is developed and experiment is carried out, results show that UPQC has good application prospect in the field of electric vehicle charging.


Sign in / Sign up

Export Citation Format

Share Document