scholarly journals Numerical Model of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise

Energies ◽  
2013 ◽  
Vol 6 (2) ◽  
pp. 839-870 ◽  
Author(s):  
Victor Fernandez-Villace ◽  
Guillermo Paniagua
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bingyang Liu ◽  
Ping Jin ◽  
Yixin Ma ◽  
Yaqun Qi ◽  
Guobiao Cai ◽  
...  

The rocket ejector refers to a core component of a rocket-based combined cycle (RBCC) engine. The ignition is of critical significance for rocket ejection. Reliable and stable ignition crucially determines the normal operation of the engine. In this paper, a thrust chamber with coaxial swirl injector for the RBCC rocket ejection was developed and tested. Gas oxygen (GOX) and kerosene acted as propellants. As revealed from the test results, the process of ignition pressurizing comprised four phases. The oxygen prefilling time before ignition slightly impacted the ignition time, whereas it affected the peak pressure of ignition. In a confined range, the peak pressure decreased as the prefilling time was extended. The ignition was simulated by building a numerical model, and the results well complied with the experimentally achieved results. The numerical model is capable of specifically indicating the position of the kernel of fire and the process of flame propagation. The simulation results reveal that the propellant could form a combustible condition within 4 ms. The kernel was 6 mm away from the injector, located at the oxygen and kerosene mixing interface and approaching the upper wall. The above results reflected the vital role of the central recirculation zone formed by the prefilled oxygen. The ignition energy was transported near the injector under the convection effect, which ignited the stoichiometric mixture, and the entire ignition could reach a stable state within 20 ms. The numerical model which was developed in this paper can help clarify the combustion mechanism.


2020 ◽  
pp. 99-111
Author(s):  
Vontas Alfenny Nahan ◽  
Audrius Bagdanavicius ◽  
Andrew McMullan

In this study a new multi-generation system which generates power (electricity), thermal energy (heating and cooling) and ash for agricultural needs has been developed and analysed. The system consists of a Biomass Integrated Gasification Combined Cycle (BIGCC) and an absorption chiller system. The system generates about 3.4 MW electricity, 4.9 MW of heat, 88 kW of cooling and 90 kg/h of ash. The multi-generation system has been modelled using Cycle Tempo and EES. Energy, exergy and exergoeconomic analysis of this system had been conducted and exergy costs have been calculated. The exergoeconomic study shows that gasifier, combustor, and Heat Recovery Steam Generator are the main components where the total cost rates are the highest. Exergoeconomic variables such as relative cost difference (r) and exergoeconomic factor (f) have also been calculated. Exergoeconomic factor of evaporator, combustor and condenser are 1.3%, 0.7% and 0.9%, respectively, which is considered very low, indicates that the capital cost rates are much lower than the exergy destruction cost rates. It implies that the improvement of these components could be achieved by increasing the capital investment. The exergy cost of electricity produced in the gas turbine and steam turbine is 0.1050 £/kWh and 0.1627 £/kWh, respectively. The cost of ash is 0.0031 £/kg. In some Asian countries, such as Indonesia, ash could be used as fertilizer for agriculture. Heat exergy cost is 0.0619 £/kWh for gasifier and 0.3972 £/kWh for condenser in the BIGCC system. In the AC system, the exergy cost of the heat in the condenser and absorber is about 0.2956 £/kWh and 0.5636 £/kWh, respectively. The exergy cost of cooling in the AC system is 0.4706 £/kWh. This study shows that exergoeconomic analysis is powerful tool for assessing the costs of products.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2015 ◽  
Vol 35 ◽  
pp. 268-271
Author(s):  
Michele Saroli ◽  
Michele Lancia ◽  
Marco Petitta ◽  
Gabriele Scarascia Mugnozza

Sign in / Sign up

Export Citation Format

Share Document