scholarly journals Investigation of Optimal Aspect Ratio and Optimal Number of Fins for Thermal Performance of Finned-Concentric-Tube Thermal Energy Storage

2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Jawad Rabbi ◽  
Muhammad Asif ◽  
Wajeeha Bibi

This research focuses on the enhancement of the heat transfer in the concentric tube type of thermal energy storage (TES). The collective influence of the aspect ratio and number of fins is investigated. First, an optimal aspect ratio of the concentric tube TES is found. Additionally, then, the optimal number of fins is found. This combined optimal configuration of TES is then compared with concentric tube TES without. Liquid fraction of the combined optimal configuration was increased by 100% for case of charging as compared to TES without fins.

Author(s):  
Jingde Zhao ◽  
Jorge L. Alvarado ◽  
Ehsan M. Languri ◽  
Chao Wang

Heat transfer analysis of a high aspect ratio thermal energy storage (TES) device was carried out numerically. The three dimensional numerical study was performed to understand the heat transfer enhancement which results from internal natural convection in a high aspect ratio vertical unit. Octadecane was used as phase change material (PCM) inside TES system, which consisted of six corrugated panels filled with PCM. Each panel had a total of 6 tall cavities filled with PCM, which were exposed to external flow in a concentric TES system. Unlike traditional concentric-type TES devices where heat transfer by conduction is the dominant heat transport mechanism, the high aspect ratio TES configuration used in the study helped promote density-gradient based internal convection mechanism. The numerical model was solved based on the finite volume method, which captured the whole transient heat transfer process effectively. The time-dependent temperature profiles of the PCM inside a single TES panel are compared with the experimental results for two cases. Numerical and experimental results of the two cases showed a reasonable agreement. Furthermore, convection cells were formed and sustained when the PCM melted within the space between the solid core and the walls. The promising results of this numerical study illustrate the importance of internal natural convection on the speed of the PCM melting (charging) process.


Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 42 ◽  
Author(s):  
Jiayi Zheng ◽  
Cheng Yu ◽  
Taotao Chen ◽  
Yanshun Yu ◽  
Fang Wang

In this study, fractal net fins were introduced to improve the melting performance of a thermal energy storage unit. A transient model for melting heat transfer for phase change material (PCM) was presented and numerically analyzed, to study the melting performance in a thermal energy storage unit using fractal net fins. The melting phase change process was modelled using the apparent heat capacity method. The evolutions of temperature and the liquid fraction in the thermal energy storage unit were investigated and discussed. The effects of the length and width ratios of the fractal net on melting performance were analyzed to obtain the optimal fin configuration. The results indicated that the fractal net fins significantly enhanced the melting heat transfer performance of the PCM in a thermal energy storage unit. The fractal net fins configuration was optimal when the length and width ratios of the fractal net were 0.5. The temperature response at the corner points of the fractal net fins was faster than that in the central points.


2021 ◽  
Vol 13 (5) ◽  
pp. 2590
Author(s):  
S. A. M. Mehryan ◽  
Kaamran Raahemifar ◽  
Leila Sasani Gargari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Javier Rodríguez-Aseguinolaza ◽  
Antoni Gil ◽  
Abdessamad Faik ◽  
Bruno D’Aguanno

Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 × 106 tons of slag are generated in the U.S. and 43.5 × 106 tons in Europe. The valorization of this by-product as heat storage material in thermal energy storage (TES) systems has numerous advantages which include the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost, and at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace (EAF) slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids (HTFs) used in the concentrated solar power (CSP) plants are analyzed. The experiments have been designed in order to cover a wide range of temperature up to the maximum operation temperature of 1000 °C corresponding to the future generation of CSP plants. In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C, and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hr laboratory-tests.


Sign in / Sign up

Export Citation Format

Share Document