scholarly journals Leaf Abundance Affects Tree Height Estimation Derived from UAV Images

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 931 ◽  
Author(s):  
Hongyu Huang ◽  
Shaodong He ◽  
Chongcheng Chen

Tree height is an important vegetative structural parameter, and its accurate estimation is of significant ecological and commercial value. We collected UAV images of six tree species distributed throughout a subtropical campus during three periods from March to late May, during which some deciduous trees shed all of their leaves and then regrew, while other evergreen trees kept some of their leaves. The UAV imagery was processed by computer vision and photogrammetric software to generate a three-dimensional dense point cloud. Individual tree height information extracted from the dense photogrammetric point cloud was validated against the manually measured reference data. We found that the number of leaves in the canopy affected tree height estimation, especially for deciduous trees. During leaf-off conditions or the early season, when leaves were absent or sparse, it was difficult to reconstruct the 3D canopy structure fully from the UAV images, thus resulting in the underestimation of tree height; the accuracy improved considerably when there were more leaves. For Terminalia mantaly and Ficus virens, the root mean square errors (RMSEs) of tree height estimation reduced from 2.894 and 1.433 m (leaf-off) to 0.729 and 0.597 m (leaf-on), respectively. We provide direct evidence that leaf-on conditions have a positive effect on tree height measurements derived from UAV photogrammetric point clouds. This finding has important implications for forest monitoring, management, and change detection analysis.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xuewen Wang ◽  
Qingzhan Zhao ◽  
Feng Han ◽  
Jianxin Zhang ◽  
Ping Jiang

To reduce data acquisition cost, this study proposed a novel method of individual tree height estimation and canopy extraction based on fusion of an airborne multispectral image and photogrammetric point cloud. A fixed-wing drone was deployed to acquire the true color and multispectral images of a shelter forest. The Structure-from-Motion (SfM) algorithm was used to reconstruct the 3D point cloud of the canopy. The 3D point cloud was filtered to acquire the ground point cloud and then interpolated to a Digital Elevation Model (DEM) using the Radial Basis Function Neural Network (RBFNN). The DEM was subtracted from the Digital Surface Model (DSM) generated from the original point cloud to get the canopy height model (CHM). The CHM was processed for the crown extraction using local maximum filters and watershed segmentation. Then, object-oriented methods were employed in the combination of 12 bands and CHM for image segmentation. To extract the tree crown, the Support Vector Machine (SVM) algorithm was used. The result of the object-oriented method was vectorized and superimposed on the CHM to estimate the tree height. Experimental results demonstrated that it is efficient to employ point cloud and the proposed approach has great potential in the tree height estimation. The proposed object-oriented method based on fusion of a multispectral image and CHM effectively reduced the oversegmentation and undersegmentation, with an increase in the F -score by 0.12–0.17. Our findings provided a reference for the health and change monitoring of shelter forests as well.


2020 ◽  
Vol 12 (5) ◽  
pp. 863 ◽  
Author(s):  
Ana Paula Dalla Corte ◽  
Franciel Eduardo Rex ◽  
Danilo Roberti Alves de Almeida ◽  
Carlos Roberto Sanquetta ◽  
Carlos A. Silva ◽  
...  

Accurate forest parameters are essential for forest inventory. Traditionally, parameters such as diameter at breast height (DBH) and total height are measured in the field by level gauges and hypsometers. However, field inventories are usually based on sample plots, which, despite providing valuable and necessary information, are laborious, expensive, and spatially limited. Most of the work developed for remote measurement of DBH has used terrestrial laser scanning (TLS), which has high density point clouds, being an advantage for the accurate forest inventory. However, TLS still has a spatial limitation to application because it needs to be manually carried to reach the area of interest, requires sometimes challenging field access, and often requires a field team. UAV-borne (unmanned aerial vehicle) lidar has great potential to measure DBH as it provides much higher density point cloud data as compared to aircraft-borne systems. Here, we explore the potential of a UAV-lidar system (GatorEye) to measure individual-tree DBH and total height using an automatic approach in an integrated crop-livestock-forest system with seminal forest plantations of Eucalyptus benthamii. A total of 63 trees were georeferenced and had their DBH and total height measured in the field. In the high-density (>1400 points per meter squared) UAV-lidar point cloud, we applied algorithms (usually used for TLS) for individual tree detection and direct measurement of tree height and DBH. The correlation coefficients (r) between the field-observed and UAV lidar-derived measurements were 0.77 and 0.91 for DBH and total tree height, respectively. The corresponding root mean square errors (RMSE) were 11.3% and 7.9%, respectively. UAV-lidar systems have the potential for measuring relatively broad-scale (thousands of hectares) forest plantations, reducing field effort, and providing an important tool to aid decision making for efficient forest management. We recommend that this potential be explored in other tree plantations and forest environments.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 250
Author(s):  
Wade T. Tinkham ◽  
Neal C. Swayze

Applications of unmanned aerial systems for forest monitoring are increasing and drive a need to understand how image processing workflows impact end-user products’ accuracy from tree detection methods. Increasing image overlap and making acquisitions at lower altitudes improve how structure from motion point clouds represents forest canopies. However, only limited testing has evaluated how image resolution and point cloud filtering impact the detection of individual tree locations and heights. We evaluate how Agisoft Metashape’s build dense cloud Quality (image resolution) and depth map filter settings influence tree detection from canopy height models in ponderosa pine forests. Finer resolution imagery with minimal filtering provided the best visual representation of vegetation detail for trees of all sizes. These same settings maximized tree detection F-score at >0.72 for overstory (>7 m tall) and >0.60 for understory trees. Additionally, overstory tree height bias and precision improve as image resolution becomes finer. Overstory and understory tree detection in open-canopy conifer systems might be optimized using the finest resolution imagery that computer hardware enables, while applying minimal point cloud filtering. The extended processing time and data storage demands of high-resolution imagery must be balanced against small reductions in tree detection performance when down-scaling image resolution to allow the processing of greater data extents.


2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


2020 ◽  
Author(s):  
Moritz Bruggisser ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Markus Hollaus

<p>Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation. <br>The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.</p>


2020 ◽  
Vol 12 (7) ◽  
pp. 1224 ◽  
Author(s):  
Abdulla Al-Rawabdeh ◽  
Fangning He ◽  
Ayman Habib

The integration of three-dimensional (3D) data defined in different coordinate systems requires the use of well-known registration procedures, which aim to align multiple models relative to a common reference frame. Depending on the achieved accuracy of the estimated transformation parameters, the existing registration procedures are classified as either coarse or fine registration. Coarse registration is typically used to establish a rough alignment between the involved point clouds. Fine registration starts from coarsely aligned point clouds to achieve more precise alignment of the involved datasets. In practice, the acquired/derived point clouds from laser scanning and image-based dense matching techniques usually include an excessive number of points. Fine registration of huge datasets is time-consuming and sometimes difficult to accomplish in a reasonable timeframe. To address this challenge, this paper introduces two down-sampling approaches, which aim to improve the efficiency and accuracy of the iterative closest patch (ICPatch)-based fine registration. The first approach is based on a planar-based adaptive down-sampling strategy to remove redundant points in areas with high point density while keeping the points in lower density regions. The second approach starts with the derivation of the surface normals for the constituents of a given point cloud using their local neighborhoods, which are then represented on a Gaussian sphere. Down-sampling is ultimately achieved by removing the points from the detected peaks in the Gaussian sphere. Experiments were conducted using both simulated and real datasets to verify the feasibility of the proposed down-sampling approaches for providing reliable transformation parameters. Derived experimental results have demonstrated that for most of the registration cases, in which the points are obtained from various mapping platforms (e.g., mobile/static laser scanner or aerial photogrammetry), the first proposed down-sampling approach (i.e., adaptive down-sampling approach) was capable of exceeding the performance of the traditional approaches, which utilize either the original or randomly down-sampled points, in terms of providing smaller Root Mean Square Errors (RMSE) values and a faster convergence rate. However, for some challenging cases, in which the acquired point cloud only has limited geometric constraints, the Gaussian sphere-based approach was capable of providing superior performance as it preserves some critical points for the accurate estimation of the transformation parameters relating the involved point clouds.


2020 ◽  
Vol 12 (5) ◽  
pp. 885 ◽  
Author(s):  
Juan Picos ◽  
Guillermo Bastos ◽  
Daniel Míguez ◽  
Laura Alonso ◽  
Julia Armesto

The present study addresses the tree counting of a Eucalyptus plantation, the most widely planted hardwood in the world. Unmanned aerial vehicle (UAV) light detection and ranging (LiDAR) was used for the estimation of Eucalyptus trees. LiDAR-based estimation of Eucalyptus is a challenge due to the irregular shape and multiple trunks. To overcome this difficulty, the layer of the point cloud containing the stems was automatically classified and extracted according to the height thresholds, and those points were horizontally projected. Two different procedures were applied on these points. One is based on creating a buffer around each single point and combining the overlapping resulting polygons. The other one consists of a two-dimensional raster calculated from a kernel density estimation with an axis-aligned bivariate quartic kernel. Results were assessed against the manual interpretation of the LiDAR point cloud. Both methods yielded a detection rate (DR) of 103.7% and 113.6%, respectively. Results of the application of the local maxima filter to the canopy height model (CHM) intensely depends on the algorithm and the CHM pixel size. Additionally, the height of each tree was calculated from the CHM. Estimates of tree height produced from the CHM was sensitive to spatial resolution. A resolution of 2.0 m produced a R2 and a root mean square error (RMSE) of 0.99 m and 0.34 m, respectively. A finer resolution of 0.5 m produced a more accurate height estimation, with a R2 and a RMSE of 0.99 and 0.44 m, respectively. The quality of the results is a step toward precision forestry in eucalypt plantations.


2021 ◽  
Vol 13 (18) ◽  
pp. 3655
Author(s):  
André Almeida ◽  
Fabio Gonçalves ◽  
Gilson Silva ◽  
Adriano Mendonça ◽  
Maria Gonzaga ◽  
...  

Digital aerial photogrammetry (DAP) data acquired by unmanned aerial vehicles (UAV) have been increasingly used for forest inventory and monitoring. In this study, we evaluated the potential of UAV photogrammetry data to detect individual trees, estimate their heights (ht), and monitor the initial silvicultural quality of 1.5-year-old Eucalyptus sp. stand in northeastern Brazil. DAP estimates were compared with accurate tree locations obtained with real time kinematic (RTK) positioning and direct height measurements obtained in the field. In addition, we assessed the quality of a DAP-UAV digital terrain model (DTM) derived using an alternative ground classification approach and investigated its performance in the retrieval of individual tree attributes. The DTM built for the stand presented an RMSE of 0.099 m relative to the RTK measurements, showing no bias. The normalized 3D point cloud enabled the identification of over 95% of the stand trees and the estimation of their heights with an RMSE of 0.36 m (11%). However, ht was systematically underestimated, with a bias of 0.22 m (6.7%). A linear regression model, was fitted to estimate tree height from a maximum height metric derived from the point cloud reduced the RMSE by 20%. An assessment of uniformity indices calculated from both field and DAP heights showed no statistical difference. The results suggest that products derived from DAP-UAV may be used to generate accurate DTMs in young Eucalyptus sp. stands, detect individual trees, estimate ht, and determine stand uniformity with the same level of accuracy obtained in traditional forest inventories.


2022 ◽  
Vol 14 (2) ◽  
pp. 298
Author(s):  
Kaisen Ma ◽  
Zhenxiong Chen ◽  
Liyong Fu ◽  
Wanli Tian ◽  
Fugen Jiang ◽  
...  

Using unmanned aerial vehicles (UAV) as platforms for light detection and ranging (LiDAR) sensors offers the efficient operation and advantages of active remote sensing; hence, UAV-LiDAR plays an important role in forest resource investigations. However, high-precision individual tree segmentation, in which the most appropriate individual tree segmentation method and the optimal algorithm parameter settings must be determined, remains highly challenging when applied to multiple forest types. This article compared the applicability of methods based on a canopy height model (CHM) and a normalized point cloud (NPC) obtained from UAV-LiDAR point cloud data. The watershed algorithm, local maximum method, point cloud-based cluster segmentation, and layer stacking were used to segment individual trees and extract the tree height parameters from nine plots of three forest types. The individual tree segmentation results were evaluated based on experimental field data, and the sensitivity of the parameter settings in the segmentation methods was analyzed. Among all plots, the overall accuracy F of individual tree segmentation was between 0.621 and 1, the average RMSE of tree height extraction was 1.175 m, and the RMSE% was 12.54%. The results indicated that compared with the CHM-based methods, the NPC-based methods exhibited better performance in individual tree segmentation; additionally, the type and complexity of a forest influence the accuracy of individual tree segmentation, and point cloud-based cluster segmentation is the preferred scheme for individual tree segmentation, while layer stacking should be used as a supplement in multilayer forests and extremely complex heterogeneous forests. This research provides important guidance for the use of UAV-LiDAR to accurately obtain forest structure parameters and perform forest resource investigations. In addition, the methods compared in this paper can be employed to extract vegetation indices, such as the canopy height, leaf area index, and vegetation coverage.


Sign in / Sign up

Export Citation Format

Share Document