scholarly journals Automated Feature-Based Down-Sampling Approaches for Fine Registration of Irregular Point Clouds

2020 ◽  
Vol 12 (7) ◽  
pp. 1224 ◽  
Author(s):  
Abdulla Al-Rawabdeh ◽  
Fangning He ◽  
Ayman Habib

The integration of three-dimensional (3D) data defined in different coordinate systems requires the use of well-known registration procedures, which aim to align multiple models relative to a common reference frame. Depending on the achieved accuracy of the estimated transformation parameters, the existing registration procedures are classified as either coarse or fine registration. Coarse registration is typically used to establish a rough alignment between the involved point clouds. Fine registration starts from coarsely aligned point clouds to achieve more precise alignment of the involved datasets. In practice, the acquired/derived point clouds from laser scanning and image-based dense matching techniques usually include an excessive number of points. Fine registration of huge datasets is time-consuming and sometimes difficult to accomplish in a reasonable timeframe. To address this challenge, this paper introduces two down-sampling approaches, which aim to improve the efficiency and accuracy of the iterative closest patch (ICPatch)-based fine registration. The first approach is based on a planar-based adaptive down-sampling strategy to remove redundant points in areas with high point density while keeping the points in lower density regions. The second approach starts with the derivation of the surface normals for the constituents of a given point cloud using their local neighborhoods, which are then represented on a Gaussian sphere. Down-sampling is ultimately achieved by removing the points from the detected peaks in the Gaussian sphere. Experiments were conducted using both simulated and real datasets to verify the feasibility of the proposed down-sampling approaches for providing reliable transformation parameters. Derived experimental results have demonstrated that for most of the registration cases, in which the points are obtained from various mapping platforms (e.g., mobile/static laser scanner or aerial photogrammetry), the first proposed down-sampling approach (i.e., adaptive down-sampling approach) was capable of exceeding the performance of the traditional approaches, which utilize either the original or randomly down-sampled points, in terms of providing smaller Root Mean Square Errors (RMSE) values and a faster convergence rate. However, for some challenging cases, in which the acquired point cloud only has limited geometric constraints, the Gaussian sphere-based approach was capable of providing superior performance as it preserves some critical points for the accurate estimation of the transformation parameters relating the involved point clouds.

Author(s):  
R. A. Persad ◽  
C. Armenakis

The automatic alignment of 3D point clouds acquired or generated from different sensors is a challenging problem. The objective of the alignment is to estimate the 3D similarity transformation parameters, including a global scale factor, 3 rotations and 3 translations. To do so, corresponding anchor features are required in both data sets. There are two main types of alignment: i) Coarse alignment and ii) Refined Alignment. Coarse alignment issues include lack of any prior knowledge of the respective coordinate systems for a source and target point cloud pair and the difficulty to extract and match corresponding control features (e.g., points, lines or planes) co-located on both point cloud pairs to be aligned. With the increasing use of UAVs, there is a need to automatically co-register their generated point cloud-based digital surface models with those from other data acquisition systems such as terrestrial or airborne lidar point clouds. This works presents a comparative study of two independent feature matching techniques for addressing 3D conformal point cloud alignment of UAV and lidar data in different 3D coordinate systems without any prior knowledge of the seven transformation parameters.


Author(s):  
Ghazanfar Ali Shah ◽  
Jean-Philippe Pernot ◽  
Arnaud Polette ◽  
Franca Giannini ◽  
Marina Monti

Abstract This paper introduces a novel reverse engineering technique for the reconstruction of editable CAD models of mechanical parts' assemblies. The input is a point cloud of a mechanical parts' assembly that has been acquired as a whole, i.e. without disassembling it prior to its digitization. The proposed framework allows for the reconstruction of the parametric CAD assembly model through a multi-step reconstruction and fitting approach. It is modular and it supports various exploitation scenarios depending on the available data and starting point. It also handles incomplete datasets. The reconstruction process starts from roughly sketched and parameterized geometries (i.e 2D sketches, 3D parts or assemblies) that are then used as input of a simulated annealing-based fitting algorithm, which minimizes the deviation between the point cloud and the reconstructed geometries. The coherence of the CAD models is maintained by a CAD modeler that performs the updates and satisfies the geometric constraints as the fitting process goes on. The optimization process leverages a two-level filtering technique able to capture and manage the boundaries of the geometries inside the overall point cloud in order to allow for local fitting and interfaces detection. It is a user-driven approach where the user decides what are the most suitable steps and sequence to operate. It has been tested and validated on both real scanned point clouds and as-scanned virtually generated point clouds incorporating several artifacts that would appear with real acquisition devices.


2020 ◽  
Vol 12 (10) ◽  
pp. 1615 ◽  
Author(s):  
Seung Woo Son ◽  
Dong Woo Kim ◽  
Woong Gi Sung ◽  
Jae Jin Yu

A methodology for optimal volume computation for the environmental management of waste stockpiles was derived by integrating the terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) technologies. Among the UAV-based point clouds generated under various flight scenarios, the most accurate point cloud was selected for analysis. The root mean square errors (RMSEs) of the TLS- and UAV-based methods were 0.202 and 0.032 m, respectively, and the volume computation yielded 41,226 and 41,526 m3, respectively. Both techniques showed high accuracy but also exhibited drawbacks in terms of their spatial features and efficiency. The TLS and UAV methods required 800 and 340 min, respectively, demonstrating the high efficiency of the UAV method. The RMSE and volume obtained using the TLS/UAV fusion model were calculated as 0.030 m and 41,232 m3, respectively. The UAV approach generally yielded high point cloud accuracy and volume computation efficiency.


2019 ◽  
Vol 8 (4) ◽  
pp. 178 ◽  
Author(s):  
Richard Boerner ◽  
Yusheng Xu ◽  
Ramona Baran ◽  
Frank Steinbacher ◽  
Ludwig Hoegner ◽  
...  

This article proposes a method for registration of two different point clouds with different point densities and noise recorded by airborne sensors in rural areas. In particular, multi-sensor point clouds with different point densities are considered. The proposed method is marker-less and uses segmented ground areas for registration.Therefore, the proposed approach offers the possibility to fuse point clouds of different sensors in rural areas within an accuracy of fine registration. In general, such registration is solved with extensive use of control points. The source point cloud is used to calculate a DEM of the ground which is further used to calculate point to raster distances of all points of the target point cloud. Furthermore, each cell of the raster DEM gets a height variance, further addressed as reconstruction accuracy, by calculating the grid. An outlier removal based on a dynamic threshold of distances is used to gain more robustness against noise and small geometry variations. The transformation parameters are calculated with an iterative least-squares optimization of the distances weighted with respect to the reconstruction accuracies of the grid. Evaluations consider two flight campaigns of the Mangfall area inBavaria, Germany, taken with different airborne LiDAR sensors with different point density. The accuracy of the proposed approach is evaluated on the whole flight strip of approximately eight square kilometers as well as on selected scenes in a closer look. For all scenes, it obtained an accuracy of rotation parameters below one tenth degrees and accuracy of translation parameters below the point spacing and chosen cell size of the raster. Furthermore, the possibility of registration of airborne LiDAR and photogrammetric point clouds from UAV taken images is shown with a similar result. The evaluation also shows the robustness of the approach in scenes where a classical iterative closest point (ICP) fails.


Author(s):  
P. Polewski ◽  
A. Erickson ◽  
W. Yao ◽  
N. Coops ◽  
P. Krzystek ◽  
...  

Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76&thinsp;x&thinsp;121&thinsp;m<sup>2</sup>) and a photogrammetric point cloud (33&thinsp;x&thinsp;35&thinsp;m<sup>2</sup>) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically, for the real plot data, 24 corresponding stems were coregistered with an average 2D position deviation of 66&thinsp;cm.


2020 ◽  
Vol 12 (18) ◽  
pp. 2884
Author(s):  
Qingwang Liu ◽  
Liyong Fu ◽  
Qiao Chen ◽  
Guangxing Wang ◽  
Peng Luo ◽  
...  

Forest canopy height is one of the most important spatial characteristics for forest resource inventories and forest ecosystem modeling. Light detection and ranging (LiDAR) can be used to accurately detect canopy surface and terrain information from the backscattering signals of laser pulses, while photogrammetry tends to accurately depict the canopy surface envelope. The spatial differences between the canopy surfaces estimated by LiDAR and photogrammetry have not been investigated in depth. Thus, this study aims to assess LiDAR and photogrammetry point clouds and analyze the spatial differences in canopy heights. The study site is located in the Jigongshan National Nature Reserve of Henan Province, Central China. Six data sets, including one LiDAR data set and five photogrammetry data sets captured from an unmanned aerial vehicle (UAV), were used to estimate the forest canopy heights. Three spatial distribution descriptors, namely, the effective cell ratio (ECR), point cloud homogeneity (PCH) and point cloud redundancy (PCR), were developed to assess the LiDAR and photogrammetry point clouds in the grid. The ordinary neighbor (ON) and constrained neighbor (CN) interpolation algorithms were used to fill void cells in digital surface models (DSMs) and canopy height models (CHMs). The CN algorithm could be used to distinguish small and large holes in the CHMs. The optimal spatial resolution was analyzed according to the ECR changes of DSMs or CHMs resulting from the CN algorithms. Large negative and positive variations were observed between the LiDAR and photogrammetry canopy heights. The stratified mean difference in canopy heights increased gradually from negative to positive when the canopy heights were greater than 3 m, which means that photogrammetry tends to overestimate low canopy heights and underestimate high canopy heights. The CN interpolation algorithm achieved smaller relative root mean square errors than the ON interpolation algorithm. This article provides an operational method for the spatial assessment of point clouds and suggests that the variations between LiDAR and photogrammetry CHMs should be considered when modeling forest parameters.


Author(s):  
A. Walicka ◽  
N. Pfeifer ◽  
G. Jóźków ◽  
A. Borkowski

<p><strong>Abstract.</strong> Remote sensing techniques are an important tool in fluvial transport monitoring, since they allow for effective evaluation of the volume of transported material. Nevertheless, there is no methodology for automatic calculation of movement parameters of individual rocks. These parameters can be determined by point cloud registration. Hence, the goal of this study is to develop a robust algorithm for terrestrial laser scanning point cloud registration. The registration is based on Iterative Closest Point algorithm, which requires well established initial parameters of transformation. Thus, we propose to calculate the initial parameters based on key points representing the maximum of Gaussian curvature. For each key point the set of geometrical features is calculated. The key points are then matched between two point clouds as a nearest neighbor in feature domain. Different combinations of neighborhood sizes, feature subsets, metrics and number of nearest neighbors were tested to obtain the highest ratio between properly and improperly matched key points. Finally, RANSAC algorithm was used to calculate the initial transformation parameters between the point clouds and the ICP algorithm was used for calculation of final transformation parameters. The investigations carried out on sample point clouds representing rocks enabled the adjustment of parameters of the algorithm and showed that the Gaussian curvature can be used as a 3-dimentional key point detector for such objects. The proposed algorithm enabled to register point clouds with the mean distance between point clouds equal to 3&amp;thinsp;mm.</p>


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4209
Author(s):  
Dongbo Yu ◽  
Jun Xiao ◽  
Ying Wang

In respect of rock-mass engineering, the detection of planar structures from the rock-mass point clouds plays a crucial role in the construction of a lightweight numerical model, while the establishment of high-quality models relies on the accurate results of surface analysis. However, the existing techniques are barely capable to segment the rock mass thoroughly, which is attributed to the cluttered and unpredictable surface structures of the rock mass. This paper proposes a high-precision plane detection approach for 3D rock-mass point clouds, which is effective in dealing with the complex surface structures, thus achieving a high level of detail in detection. Firstly, the input point cloud is fast segmented to voxels using spatial grids, while the local coplanarity test and the edge information calculation are performed to extract the major segments of planes. Secondly, to preserve as much detail as possible, supervoxel segmentation instead of traditional region growing is conducted to deal with scattered points. Finally, a patch-based region growing strategy applicable to rock mass is developed, while the completed planes are obtained by merging supervoxel patches. In this paper, an artificial icosahedron point cloud and four rock-mass point clouds are applied to validate the performance of the proposed method. As indicated by the experimental results, the proposed method can make high-precision plane detection achievable for rock-mass point clouds while ensuring high recall rate. Furthermore, the results of both qualitative and quantitative analyses evidence the superior performance of our algorithm.


2021 ◽  
Vol 10 (4) ◽  
pp. 204
Author(s):  
Ramazan Alper Kuçak ◽  
Serdar Erol ◽  
Bihter Erol

Light detection and ranging (LiDAR) data systems mounted on a moving or stationary platform provide 3D point cloud data for various purposes. In applications where the interested area or object needs to be measured twice or more with a shift, precise registration of the obtained point clouds is crucial for generating a healthy model with the combination of the overlapped point clouds. Automatic registration of the point clouds in the common coordinate system using the iterative closest point (ICP) algorithm or its variants is one of the frequently applied methods in the literature, and a number of studies focus on improving the registration process algorithms for achieving better results. This study proposed and tested a different approach for automatic keypoint detecting and matching in coarse registration of the point clouds before fine registration using the ICP algorithm. In the suggested algorithm, the keypoints were matched considering their geometrical relations expressed by means of the angles and distances among them. Hence, contributing the quality improvement of the 3D model obtained through the fine registration process, which is carried out using the ICP method, was our aim. The performance of the new algorithm was assessed using the root mean square error (RMSE) of the 3D transformation in the rough alignment stage as well as a-prior and a-posterior RMSE values of the ICP algorithm. The new algorithm was also compared with the point feature histogram (PFH) descriptor and matching algorithm, accompanying two commonly used detectors. In result of the comparisons, the superiorities and disadvantages of the suggested algorithm were discussed. The measurements for the datasets employed in the experiments were carried out using scanned data of a 6 cm × 6 cm × 10 cm Aristotle sculpture in the laboratory environment, and a building facade in the outdoor as well as using the publically available Stanford bunny sculpture data. In each case study, the proposed algorithm provided satisfying performance with superior accuracy and less iteration number in the ICP process compared to the other coarse registration methods. From the point clouds where coarse registration has been made with the proposed method, the fine registration accuracies in terms of RMSE values with ICP iterations are calculated as ~0.29 cm for Aristotle and Stanford bunny sculptures, ~2.0 cm for the building facade, respectively.


2012 ◽  
Vol 472-475 ◽  
pp. 317-322 ◽  
Author(s):  
Xiao Yi Wang ◽  
Jing Chen ◽  
Jiang Zhu ◽  
Yoshio Saito ◽  
Tomohisa Tanaka

Registration of 3-D shape is significant in quantizing the error between the part and its CAD model and evaluating the part's manufacturing accuracy. In the past, various improved methods of the iterative closest point (ICP) had been proposed in registration. However, without fine initial pose of point clouds, the ICP algorithm often could not converge to the best (or near best) solution. According to the characteristics of 3-D shape with free-form surface, a new method for registration of 3-D shape with free-form surface is given, by which there are not rigid requests in initial pose of point data and the 3-D shape model could be in arbitrary positions and orientations in space. To improve the efficiency and accuracy of solving, this method is divided into general registration and fine registration. General registration is to fit rapidly and roughly the measured point cloud to designing point cloud from CAD model by Imageware. Fine registration is to further accurately fit the two group points using genetic algorithm (GA). Case study is finally given for a work piece with free-form surface to show the effectiveness of the above method.


Sign in / Sign up

Export Citation Format

Share Document