scholarly journals Evaluation of Different Calibration Approaches for Merchantable Volume Predictions of Norway Spruce Using Nonlinear Mixed Effects Model

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1104
Author(s):  
Zdeněk Adamec ◽  
Radim Adolt ◽  
Karel Drápela ◽  
Jiří Závodský

Research Highlights: Determination of merchantable wood volume is one of the key preconditions for sustainable forest management. This study explores accuracy of calibrated predictions of merchantable wood volume of Norway spruce (Picea abies (L.) H. Karst.) using stem taper curves (STC) in a form of a mixed model. Background and Objectives: The study is devoted to the determination of merchantable wood volume (over bark) of individual standing stems based on the integration of an STC model calibrated using upper diameter measurements. Various options of upper diameter measurement were tested and their impact on the accuracy of merchantable wood volume prediction was evaluated. Materials and Methods: To model stem taper curves, a Kozak 02 function was applied in a form of a nonlinear, mixed effects model. Accuracies of calibrated merchantable wood volume predictions obtained through remote (optical) upper diameter measurements were compared to accuracies corresponding to contact measurements by a caliper. The performance of two alternative methods used in the Czech National Forest Inventory (NFI) and forestry practice, involving diameter at breast height and total tree height as the only predictors, were also tested. The contact measurements were performed at identical stem positions after felling the respective sample tree. The calibration was done in order to account for factors inherent in particular location, and, optionally, also in a particular sample stem (within the respective location). Input data was sourced as part of a dedicated survey involving the entire territory of the Czech Republic. In total, 716 individual spruce trees were measured, felled and analysed at 169 locations. Results: In general, the best merchantable volume predictions were obtained by integrating the STC fitted (and calibrated) by minimising errors of stem cross-sectional areas instead of diameters. In terms of calibrated predictions, using single-directional, caliper measurement of upper diameter at 7 m (after felling) led to the best accuracy. In this case, the observed mean bias of merchantable volume prediction was only 0.63%, indicating underestimation. The best optical calibration strategy involved upper diameter measurements at two heights (5 and 7 m) simultaneously. Bias of this volume prediction approach was estimated at 2.1%, indicating underestimation. Conclusions: Concerning the prediction of merchantable stem volume of standing Norway spruce trees, STC calibration using two optical upper diameter measurements (at 5 and 7 m) was found to be practically applicable, provided a bias up to 3.7% can be accepted. This method was found to be more accurate than the existing national alternatives using diameter at breast height and the total tree height as the only predictors.

Silva Fennica ◽  
2019 ◽  
Vol 53 (3) ◽  
Author(s):  
Timo Pukkala ◽  
Kjersti Hanssen ◽  
Kjell Andreassen

Based on data from long-term experimental fields with Norway spruce ( (L.) H. Karst.), we developed new stem taper and bark functions for Norway. Data was collected from 477 trees in stands across Norway. Three candidate functions which have shown good performance in previous studies (Kozak 02, Kozak 97 and Bi) were fitted to the data as fixed-effects models. The function with the smallest Akaike Information Criterion (AIC) was then chosen for additional analyses, fitting 1) site index-dependent and 2) age-dependent versions of the model, and 3) fitting a mixed-effects model with tree-specific random parameters. Kozak 97 was found to be the function with the smallest AIC, but all three tested taper functions resulted in fairly similar predictions of stem taper. The site index-dependent function reduced AIC and residual standard error and showed that the effect of site index on stem taper is different in small and large trees. The predictions of the age-independent and age-dependent models were very close to each other. Adding tree-specific random parameters to the model clearly reduced AIC and residual variation. However, the results suggest that the mixed-effects model should be used only when it is possible to calibrate it for each tree, otherwise the fixed-effects Kozak 97 model should be used. A model for double bark thickness was also fitted as fixed-effects Kozak 97 model. The model behaved logically, predicting larger relative but smaller absolute bark thickness for small trees.Picea abies


2020 ◽  
Vol 39 (15) ◽  
pp. 2051-2066 ◽  
Author(s):  
Rui Wang ◽  
Ante Bing ◽  
Cathy Wang ◽  
Yuchen Hu ◽  
Ronald J. Bosch ◽  
...  

2021 ◽  
pp. 97-105

Background: The current challenge is to reduce the uncertainties in obtaining accurate and reliable data of carbon stock changes and emission factors essential for reporting national inventories. Improvements in above ground biomass estimation can also help account for changes in carbon stock in forest areas that may potentially participate in the Reducing emissions from deforestation and forest degradation and other initiatives. Current objectives for such estimates need a unified approach which can be measurable, reportable, and verifiable. This might result to a geographically referenced biomass density database for Sudanese forests that would reduce uncertainties in estimating forest aboveground biomass. The main objective: of this study is to assess potential of some selected forest variables for modeling carbon sequestration for Acacia seyal, vr. Seyal, Acacia seyal, vr. fistula, Acacia Senegal. The specific objectives include development of empirical allometric models for forest biomass estimation, estimation of carbon sequestration for these tree species, estimation of carbon sequestration per hectare and comparing the amount with that reported to the region. A total of 10 sample trees for biomass and carbon determination were selected for each of the three species from El Nour Natural Forest Reserve of the Blue Nile State, Sudan. Data of diameter at breast height, total tree height, tree crown diameter, crown height, and upper stem diameters were measured. Then sample trees were felled and sectioned to their components, and weighed. Subsamples were selected from each component for oven drying at 105 ˚C. Finally allometric models were developed and the aboveground dry weight (dwt) and carbon sequestered per hector were calculated. The results: presents biomass equations, biomass expansion factor and wood density that developed for the trees. In case of inventoried wood volume, corrections for biomass expansion factor and wood density value were done, and new values are suggested for use to convert wood volume to biomass estimates. The results also, indicate that diameter at breast height, crown diameter and tree height are good predictors for estimation of tree dwt and carbon stock. Conclusion: The developed allometric equations in this study gave better estimation of dwt than default value. The average carbon stock was found to be 22.57 t/ha.


2008 ◽  
Vol 01 (02) ◽  
pp. 85-90
Author(s):  
Jian Huang ◽  
Kathleen O’Sullivan ◽  
John Levis ◽  
Elizabeth Kenny-Walsh ◽  
Orla Crosbie ◽  
...  

2012 ◽  
Vol 94 (4) ◽  
pp. 188-191 ◽  
Author(s):  
Megumi Ishida ◽  
Satoshi Naoi ◽  
Yasumasa Watanabe ◽  
Akinori Tsuzuku ◽  
Masaya Aoki

2013 ◽  
Vol 43 (7) ◽  
pp. 649-657 ◽  
Author(s):  
Sharad Kumar Baral ◽  
Robert Schneider ◽  
David Pothier ◽  
Frank Berninger

The presence of wound (strain) initiated discoloured wood columns in the core of sugar maple (Acer saccharum Marshall) stems reduces the proportion of white-coloured wood and, thus, lowers its commercial value. This study aimed to assess the relationship between tree characteristics and the extent and proportion of discoloured wood in sugar maple tree stems. Using 109 trees from three different sites in southern Quebec, we found that the proportion of discoloured wood increased with decreasing sapwood volume and increasing tree age. Younger trees showed a significantly lower proportion of discoloured wood volume. Discoloured wood volume increases disproportionately with tree diameter, while varying among sites. The third important factor affecting the amount of discolored wood was tree vigour as measured by crown characteristics and growth rate changes. A nonlinear mixed-effects model was used to predict discoloured wood taper. Height along the stem was used as a predictor, along with diameter at 1.3 m (DBH), the ratio of live crown length to tree height, and tree height. Although observed injury surface area was positively correlated to discoloured wood volume, injury information did not explain a large share of discoloured wood proportion variation. Overall, older and larger trees with many injuries on less productive sites are likely to have more discoloured wood.


2010 ◽  
Vol 3 (3) ◽  
pp. 1185-1221
Author(s):  
S. Mikkonen ◽  
H. Korhonen ◽  
S. Romakkaniemi ◽  
J. N. Smith ◽  
J. Joutsensaari ◽  
...  

Abstract. Measurements of aerosol size-distribution and different gas and meteorological parameters, made in three polluted sites in Central- and Southern Europe: Po Valley, Italy, Melpitz and Hohenpeissenberg in Germany, were analysed for this study to examine which of the meteorological and trace gas variables affect the number concentration of Aitken (Dp=50 nm) particles. The aim of our study was to predict the number concentration of 50 nm particles by a combination of in-situ meteorological and gas phase parameters. The statistical model needs to describe, amongst others, the factors affecting the growth of newly formed aerosol particles (below 10 nm) to 50 nm size, but also sources of direct particle emissions in that size range. As the analysis method we used multivariate nonlinear mixed effects model. Hourly averages of gas and meteorological parameters measured at the stations were used as predictor variables; the best predictive model was attained with a combination of relative humidity, new particle formation event probability, temperature, condensation sink and concentrations of SO2, NO2 and ozone. The seasonal variation was also taken into account in the mixed model structure. Model simulations with the Global Model of Aerosol Processes (GLOMAP) indicate that the parameterization can be used as a part of a larger atmospheric model to predict the concentration of climatically active particles. As an additional benefit, the introduced model framework is, in theory, applicable for any kind of measured aerosol parameter.


Sign in / Sign up

Export Citation Format

Share Document