scholarly journals Development of Comprehensive Fuel Management Strategies for Reducing Wildfire Risk in Greece

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 789
Author(s):  
Palaiologos Palaiologou ◽  
Kostas Kalabokidis ◽  
Alan A. Ager ◽  
Michelle A. Day

A solution to the growing problem of catastrophic wildfires in Greece will require a more holistic fuel management strategy that focuses more broadly on landscape fire behavior and risk in relation to suppression tactics and ignition prevention. Current fire protection planning is either non-existent or narrowly focused on reducing fuels in proximity to roads and communities where ignitions are most likely. A more effective strategy would expand the treatment footprint to landscape scales to reduce fire intensity and increase the likelihood of safe and efficient suppression activities. However, expanding fuels treatment programs on Greek landscapes that are highly fragmented in terms of land use and vegetation requires: (1) a better understanding of how diverse land cover types contribute to fire spread and intensity; and (2) case studies, both simulated and empirical, that demonstrate how landscape fuel management strategies can achieve desired outcomes in terms of fire behavior. In this study, we used Lesvos Island, Greece as a study area to characterize how different land cover types and land uses contribute to fire exposure and used wildfire simulation methods to understand how fire spreads among parcels of forests, developed areas, and other land cover types (shrublands, agricultural areas, and grasslands) as a way to identify fire source–sink relationships. We then simulated a spatially coordinated fuel management program that targeted the fire prone conifer forests that generally burn under the highest intensity. The treatment effects were measured in terms of post-treatment fire behavior and transmission. The results demonstrated an optimized method for fuel management planning that accounts for the connectivity of wildfire among different land types. The results also identified the scale of risk and the limitations of relying on small scattered fuel treatment units to manage long-term wildfire risk.

FLORESTA ◽  
2013 ◽  
Vol 43 (4) ◽  
pp. 557
Author(s):  
Celso Darci Seger ◽  
Antonio Carlos Batista ◽  
Alexandre França Tetto ◽  
Ronaldo Viana Soares

As queimas controladas constituem práticas de manejo utilizadas em diferentes tipos de vegetação e difundidas em vários países. No entanto, para a realização de tais práticas com segurança e eficiência é fundamental o conhecimento do comportamento do fogo. O objetivo desse trabalho foi caracterizar o comportamento do fogo em queimas controladas de vegetação Estepe Gramíneo-Lenhosa no estado do Paraná. Para isso, foi instalado um experimento no município de Palmeira, onde 20 parcelas foram queimadas, sendo metade a favor e metade contra o vento. A carga de material combustível fino estimada foi de 2,26 kg.m-2, com teor médio de umidade de 50,45%. A quantidade de material consumido pela queima foi de 1,76 kg.m-2, com uma eficiência média de queima de 76,86%. As médias obtidas, a favor e contra o vento, foram respectivamente: velocidade de propagação do fogo de 0,049 e 0,012 m.s-1, altura das chamas de 1,34 e 0,843 m, intensidade do fogo de 210,53 e 50,68 kcal.m-1.s-1 e calor liberado de 4.067,19 e 4.508,92 kcal.m-2. Os resultados permitiram concluir que as queimas controladas em vegetação de campos naturais, realizadas dentro dos critérios estabelecidos de planos de queima, são viáveis e seguras sob o ponto de vista de perigo de incêndios.Palavras chave: Queima prescrita; material combustível; intensidade do fogo; perigo de incêndios. AbstractFire behavior of prescribed burns in grassland on Palmeira county, Paraná, Brazil. The prescribed burns are practices of management used in different types of vegetation and widespread in several countries. However, to carry out such practices safely and effectively is fundamental knowledge of fire behavior. The aim of this study was to characterize the fire behavior in controlled burning of grassland vegetation in Paraná state. For this, an experiment was conducted in Palmeira County, where 20 plots were burned, half in favor and half against the wind. The estimated fine fuel loading was 2.26 kg.m-2, with average moisture content of 50.45%. The fuel consumption by burning was 1.76 kg.m-2 with an average efficiency of burning of 76.86%. The averages, for and against the wind, were: speed of fire spread of 0.049 and 0.012 m.s-1, the flame height of 1.34 m and 0.843, fire intensity of 210.53 and 50.68 kcal.m-1.s-1 and heat released from 4,067.19 and 4,508.92 kcal.m-2. The results show that the controlled burnings of grasslands vegetation, carried out within the established criteria burning plans are feasible and safe from the aspect of fire danger.Keywords: Prescribed burns; fuel loading; fire intensity; fire risk.


1998 ◽  
Vol 74 (1) ◽  
pp. 50-52 ◽  
Author(s):  
C. E. Van Wagner

This article outlines the flexible semi-empirical philosophy used throughout six decades of fire research by the Canadian Forest Service, culminating in the development of the Forest Fire Behavior Prediction System. It then describes the principles involved when spread rate and fuel consumption are estimated separately to yield fire intensity, and the anomaly that has resulted from the omission of a foliar-moisture effect on crown-fire spread. Judged on its results so far, this Canadian approach has held its own against any other, and holds full promise for the future as well. Key words: forest fire behavior, Canadian FBP System, fire modelling, crown-fire theory, fire research philosophy


2005 ◽  
Vol 14 (2) ◽  
pp. 131 ◽  
Author(s):  
Tamara J. Streeks ◽  
M. Keith Owens ◽  
Steve G. Whisenant

The vegetation of South Texas has changed from mesquite savanna to mixed mesquite–acacia (Prosopis–Acacia) shrubland over the last 150 years. Fire reduction, due to lack of fine fuel and suppression of naturally occurring fires, is cited as one of the primary causes for this vegetation shift. Fire behavior, primarily rate of spread and fire intensity, is poorly understood in these communities, so fire prescriptions have not been developed. We evaluated two current fire behavior systems (BEHAVE and the CSIRO fire spread and fire danger calculator) and three models developed for shrublands to determine how well they predicted rate of spread and flame length during three summer fires within mesquite–acacia shrublands. We also used geostatistical analyses to examine the spatial pattern of net heat, flame temperature and fuel characteristics. The CSIRO forest model under-predicted the rate of fire spread by an average of 5.43 m min−1 and over-predicted flame lengths by 0.2 m while the BEHAVE brush model under-predicted rate of spread by an average of 6.57 m min−1 and flame lengths by an average of 0.33 m. The three shrubland models did not consistently predict the rate of spread in these plant communities. Net heat and flame temperature were related to the amount of 10-h fuel on the site, but were not related to the cover of grasses, forbs, shrubs, or apparent continuity of fine fuel. Fuel loads were typical of South Texas shrublands, in that they were uneven and spatially inconsistent, which resulted in an unpredictable fire pattern.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Michael R. Gallagher ◽  
Zachary Cope ◽  
Daniel Rosales Giron ◽  
Nicholas S. Skowronski ◽  
Trevor Raynor ◽  
...  

New physics-based fire behavior models are poised to revolutionize wildland fire planning and training; however, model testing against field conditions remains limited. We tested the ability of QUIC-Fire, a fast-running and computationally inexpensive physics-based fire behavior model to numerically reconstruct a large wildfire that burned in a fire-excluded area within the New York–Philadelphia metropolitan area in 2019. We then used QUIC-Fire as a tool to explore how alternate hypothetical management scenarios, such as prescribed burning, could have affected fire behavior. The results of our reconstruction provide a strong demonstration of how QUIC-Fire can be used to simulate actual wildfire scenarios with the integration of local weather and fuel information, as well as to efficiently explore how fire management can influence fire behavior in specific burn units. Our results illustrate how both reductions of fuel load and specific modification of fuel structure associated with frequent prescribed fire are critical to reducing fire intensity and size. We discuss how simulations such as this can be important in planning and training tools for wildland firefighters, and for avenues of future research and fuel monitoring that can accelerate the incorporation of models like QUIC-Fire into fire management strategies.


FLORESTA ◽  
2004 ◽  
Vol 34 (2) ◽  
Author(s):  
Luciana Valle De Loro ◽  
Nelson Akira Hiramatsu

De um povoamento de Pinus elliottii localizado na Fazenda Canguiri-UFPR, foram coletadas seis amostras de material combustível superficial. Este material foi separado em classes, pesado e levado para o laboratório. Efetuou-se a queima da classe acículas num leito de areia no laboratorio, em seis queimas, sendo cada queima com acículas proveniente de cada uma das amostras coletadas. Foram medidas a altura, o comprimento e a velocidade de propagação do fogo. Aplicou-se para cada queima cerca de 746 g de acículas, equivalente a 0,678 Kg/m2, com uma espessura média de 3 cm. Foram obtidos como dados médios: velocidade de propagação de 0,00423 m/s, comprimento da chama de 35,22 cm e altura de 38,79 cm, resultando numa intensidade do fogo igual a 57,07 kW/m. O resíduo médio ficou na ordem de 40,3 %. FIRE BEHAVIOR, IN LABORATORY CONDITIONS, OF FOREST FUELS FROM A Pinus elliottii L. STAND Abstract Pinus elliottii needles from a stand located at Fazenda Canguiri-UFPR were collected to run a laboratory test on fire behavior. The fuel from six samples was separated in classes, weight, and taken to the Federal University of Paraná Forest Fire Laboratory. The pine needles were burned in a sand bed. About 746.0g of each one of the six samples, equivalent to 0.678kg.m-2 and 3cm depth, were used in each fire run. Flame height and length, and rate of spread were measured. The average values obtained were: fire spread, 0,00423 m.s-1, flame length, 35,22cm, and flame height, 38,79cm. Fire intensity was of 57,07 kW.m-1 and residual fuel content about 40,3%.


2009 ◽  
Vol 17 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Feng WANG ◽  
Shu-Qi WANG ◽  
Xiao-Zeng HAN ◽  
Feng-Xian WANG ◽  
Ke-Qiang ZHANG

2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


Sign in / Sign up

Export Citation Format

Share Document