Soil moisture dynamics of different land-cover types in the blacksoil regions of China

2009 ◽  
Vol 17 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Feng WANG ◽  
Shu-Qi WANG ◽  
Xiao-Zeng HAN ◽  
Feng-Xian WANG ◽  
Ke-Qiang ZHANG
2012 ◽  
Vol 16 (8) ◽  
pp. 2883-2892 ◽  
Author(s):  
S. Wang ◽  
B. J. Fu ◽  
G. Y. Gao ◽  
X. L. Yao ◽  
J. Zhou

Abstract. We studied the impacts of re-vegetation on soil moisture dynamics and evapotranspiration (ET) of five land cover types in the Loess Plateau in northern China. Soil moisture and temperature variations under grass (Andropogon), subshrub (Artemisia scoparia), shrub (Spiraea pubescens), plantation forest (Robinia pseudoacacia), and crop (Zea mays) vegetation were continuously monitored during the growing season of 2011. There were more than 10 soil moisture pulses during the period of data collection. Surface soil moisture of all of the land cover types showed an increasing trend in the rainy season. Soil moisture under the corn crop was consistently higher than the other surfaces. Grass and subshrubs showed an intermediate moisture level. Grass had slightly higher readings than those of subshrub most of the time. Shrubs and plantation forests were characterized by lower soil moisture readings, with the shrub levels consistently being slightly higher than those of the forests. Despite the greater post-rainfall loss of moisture under subshrub and grass vegetation than forests and shrubs, subshrub and grass sites exhibit a higher soil moisture content due to their greater soil retention capacity in the dry period. The daily ET trends of the forests and shrub sites were similar and were more stable than those of the other types. Soils under subshrubs acquired and retained soil moisture resources more efficiently than the other cover types, with a competitive advantage in the long term, representing an adaptive vegetation type in the study watershed. The interactions between vegetation and soil moisture dynamics contribute to structure and function of the ecosystems studied.


2020 ◽  
Author(s):  
María Valiente ◽  
Ane Zabaleta ◽  
Maite Meaurio ◽  
Jesus A. Uriarte ◽  
Iñaki Antigüedad

<p>The Pyrenees mountain range is the main source of water resources for a large surrounding region, extending from the Atlantic to the Mediterranean. This area is particularly vulnerable to the consequences of climate change. The PIRAGUA project (Interreg-POCTEFA) evaluates the components of the hydrological cycle in the Pyrenees, with the central objective of improving the adaptation of territories to climate change. One of its tasks focuses on the analysis of the effect that land cover and associated soil properties have on different hydrological services. Indeed, land use and its management directly affect soil hydrology, which is a key factor in streamflow temporal distribution. A better understanding of the water-soil-vegetation system is essential for a reliable hydrological modelling which results should be considered in adaptation strategies to climate change.</p><p>To this aim, chemical and physical characterization of soil properties is being conducted at the 681 km<sup>2</sup> humid Bidasoa catchment (Pyrenees). In order to understand the soil-moisture dynamics, a monitoring network was established in July 2019 in a 0.4 km<sup>2</sup> experimental site within the catchment. Four soil-moisture stations and a meteorological one were installed within the same geological setting, same rainfall conditions and similar soil texture characteristics (silt-loamy texture and about one meter deep), but different land covers (pine forest, oak forest, grassland and fernery). Continuous soil-moisture data obtained to date show that upper soil layers (0-20 cm) are deeply influenced by top vegetation cover. Grassland has the highest soil-moisture variations, ranging from 16.2 to 36.6 %, as they closely mirror precipitation patterns. Pine and oak forests present similar variation trend, varying from 33.9 to 42.8 % and from 35.3 to 41.9 %, respectively. Soil-moisture at fernery goes from 30.5 to 36 %. Minimum soil-moisture values coincide in all plots with the end of the dry period (end of September). Maximum values, occurring during very heavy and continuous precipitation in November (647 mm registered from 1 to 24 November), are considered as a proxy for saturated soil conditions. In all the plots, fluctuations in soil-moisture diminish significantly with increasing soil depth. However, considerable differences are found in the vertical soil-moisture profile across land covers. In both forest plots, a decreasing trend of soil-moisture within the profile is observed, while grassland and fernery show an increasing trend. Preliminary results show that soil water infiltration is different among different land covers, which give some insight into the hydrological functionality of soil under different vegetation types. Longer records of soil-moisture dynamics in the area would contribute to better assess the linkages between water, soil and vegetation and, in turn, to improve hydrological modelling in humid mountainous areas. This knowledge is necessary for a better consideration of the adaptation measures that should be taken from the territory.</p>


2016 ◽  
Vol 75 (2) ◽  
Author(s):  
Muhammad Ajmal ◽  
Muhammad Waseem ◽  
Waqas Ahmad ◽  
Tae-Woong Kim

2018 ◽  
Vol 22 (6) ◽  
pp. 3229-3243 ◽  
Author(s):  
Maoya Bassiouni ◽  
Chad W. Higgins ◽  
Christopher J. Still ◽  
Stephen P. Good

Abstract. Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash–Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.


2015 ◽  
Vol 19 (6) ◽  
pp. 2617-2635 ◽  
Author(s):  
M. Sprenger ◽  
T. H. M. Volkmann ◽  
T. Blume ◽  
M. Weiler

Abstract. Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last 2 decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by solving the Richards equation numerically with the finite-element code of HYDRUS-1D. The transport of deuterium was simulated with the advection-dispersion equation, and a modified version of HYDRUS was used, allowing deuterium loss during evaporation. The Mualem–van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a), using only the pore water isotope content, cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c), using both the isotope profiles and the soil moisture time series, resulted in good simulation results with regard to the Kling–Gupta efficiency and good parameter identifiability. However, approach (b) has the advantage that it considers the isotope data not only for the solute transport parameters but also for water flow and root water uptake, and thus increases parameter realism. Approaches (b) and (c) both outcompeted simulations run with parameters derived from pedotransfer functions, which did not result in an acceptable representation of the soil moisture dynamics and pore water stable isotope composition. Overall, parameters based on this new approach that includes isotope data lead to similar model performances regarding the water balance and soil moisture dynamics and better parameter identifiability than the conventional inverse model approaches limited to hydrometric fitting targets. If only data from isotope profiles in combination with textural information is available, the results are still satisfactory. This method has the additional advantage that it will not only allow us to estimate water balance and response times but also site-specific time variant transit times or solute breakthrough within the soil profile.


2021 ◽  
Author(s):  
Lin Li ◽  
Hu Liu ◽  
Yang Yu ◽  
Wenzhi Zhao

&lt;p&gt;&lt;strong&gt;Abstract: &lt;/strong&gt;Wetlands remaining in the arid inland river landscapes of northwestern China suffer degradation and their resilience and ability to continue functioning under hydrologic and land use changes resulting from climate change may be significantly inhibited. Information on the desert-oasis wetlands, however, is sparse and knowledge of how ecological functioning and resilience may change under climate change and water-resource management is still lacking. Research in oasis wetland areas of the Northwestern China identified linkages between subsurface flow, plant transpiration, and water levels. In this study, we present an ecohydrological analysis of the energy and water balance in the wetland ecosystem. A process-based stochastic soil moisture model developed for groundwater-dependent ecosystems was employed to modelling the interactions between rainfall, water table fluctuations, soil moisture dynamics, and vegetation, and to investigate the ecohydrology of arid inland wetlands system. Field measured groundwater levels, vertical soil moisture profiles, soil water potentials, and root biomass allocation and transpiration of pioneer species in the wetlands were used to calibrate and validate the stochastic model. The parameterized model was then running to simulate the probability distributions of soil moisture and root water uptake, and quantitative descript the vegetation&amp;#8211;water table&amp;#8211;soil moisture interplay in the hypothesized scenarios of future. Our analysis suggested the increasing rates of water extraction and regulation of hydrologic processes, coupled with destruction of natural vegetation, and climate change, are jeopardizing the future persistence of wetlands and the ecological and socio-economic functions they support. To understand how climate change will impact on the ecohydrological functioning of wetlands, both hydrological and land use changes need to be considered in future works.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords: &lt;/strong&gt;Wetland ecosystem, groundwater, soil moisture dynamics, water balances, Heihe River Basin&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document