scholarly journals Potential Differences and Methods of Determining Gypsy Moth Female Flight Capabilities: Implications for the Establishment and Spread in Novel Habitats

Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Vivek Srivastava ◽  
Melody A. Keena ◽  
Galen E. Maennicke ◽  
Richard C. Hamelin ◽  
Verena C. Griess

The introduction of the Asian gypsy moth into novel environments continues with frequent interceptions in North America. There is a concern that these subspecies will pose a greater threat to the forests and urban environments of North America than the established gypsy moths (Lymantria dispardispar L.), due to their greater capacity for female flight. Asian gypsy moth populations vary in many key traits, including female flight capabilities. The potential impacts of female flight, in combination with the other key traits, on the ecology and spread of this insect are first discussed in this communication. This also provides the first review of most of the current literature on the variations in flight capability and flight distance of gypsy moth populations, as well as variation in other traits of concern and the potential methods of identification, with special attention paid to the Asian subspecies Lymantria dispar japonica Motschulsky and Lymantria dispar asiatica Vinkovskij. There are currently good tools for identifying the general origin of introduced gypsy moth populations, but these do not provide enough information to effectively manage introductions. Gypsy moth key traits differ among populations, even within each subspecies of the gypsy moth, so introduction of gypsy moths from other world areas into locations where the gypsy moth is already present could result in unwanted changes in gypsy moth biology. It also appears that the introduction of flight-capable females could enhance a population’s dispersal capability and require modifications to management protocols used for flightless females. Therefore, rapid tools to assess key traits in introduced populations are needed to adequately plan for, or deal with, new introductions into novel habitats.

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1100 ◽  
Author(s):  
Yifan Zuo ◽  
D. K. Kurenshchikov ◽  
Jinyong Yu ◽  
Yuanping Zou ◽  
Yiming Wang ◽  
...  

The gyspy moth Lymantria dispar Linnaeus, a widely distributed leaf-eating pest, is considered geographically isolated in the world, with two Asian gypsy moth subspecies, Lymantria dispar asiatica and Lymantria dispar japonica. In China, only one subspecies, L. d. asiatica, has been observed. In this study, we characterized gypsy moth diversity and divergence using 427 samples covering a wide range of the species distribution, with a focus on sampling along a latitudinal gradient in China. We combine the quantitative analysis of male genitalia and the genetic diversity analysis of nine microsatellite loci of nuclear genes nuclear genes to study the structure of gypsy moth individuals in 23 locations in the world and the male genitalia of gypsy moths in some areas. In mixed ancestry model-based clustering analyses based on nuclear simple sequence repeats, gypsy moths were divided into three well-known subspecies, a unique North American cluster, and a southern Chinese cluster with differentiation between the Asian gypsy moth and European gypsy moth. We also found individuals identified as European gypsy moths in two distant regions in China. The results of a quantitative analysis of male genitalia characteristics were consistent with an analysis of genetic structure and revealed the differentiation of gypsy moths in southern China and of hybrids suspected to be associated with L. d. japonica in the Russian Far East. Admixture in gypsy moths can be explained by many factors such as human transport. In China, we detected European gypsy moths, and found unexpectedly high genetic diversity within populations across a wide range of latitudes.


2020 ◽  
Vol 13 (8) ◽  
pp. 2056-2070
Author(s):  
Yunke Wu ◽  
Steven M. Bogdanowicz ◽  
Jose A. Andres ◽  
Kendra A. Vieira ◽  
Baode Wang ◽  
...  

2019 ◽  
Vol 116 (5) ◽  
pp. 1669-1678 ◽  
Author(s):  
Jing Zhang ◽  
Qian Cong ◽  
Emily A. Rex ◽  
Winnie Hallwachs ◽  
Daniel H. Janzen ◽  
...  

Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.


1987 ◽  
Vol 119 (9) ◽  
pp. 765-771 ◽  
Author(s):  
Pedro Barbosa ◽  
Peter Martinat

AbstractThe role of starvation, the occurrence of mating, and delays and the onset of mating on the retention of eggs by the gypsy moth, Lymantria dispar (L.), were evaluated. The mating status of female gypsy moths did influence egg retention.Mating delays did not affect egg retention. Differences in the number of females retaining some eggs were found among females whose larvae had been reared on different host plants. The amount of food consumed had a significant effect on egg retention. Partial starvation had an impact on egg retention and on larval and pupal development, pupal size, and total egg production. The greater the starvation the greater the egg retention. The ecological implications of these results are discussed.


2020 ◽  
Author(s):  
Yuntong LV ◽  
Lili Sun ◽  
Jingjing Yin ◽  
Yanpeng Jia ◽  
Hui Du ◽  
...  

Abstract Background: Poplar is frequently attacked by herbivorous insects, including the Asian gypsy moth, Lymantria dispar. Here, we combined metabolomic and transcriptomic analysis to identify key genes and metabolites involved into the molecular mechanism of defensive enhancement against L. dispar herbivory on poplar. Results: The 3666 differentially expressed genes (DEGs, 1,799 up-regulated and 1,867 down-regulated) and 1,171 DEGs (695 up-regulated and 476 down-regulated) were specific in L. dispar herbivory and mechanical wounding, respectively. Moreover, the 9,108 and 7,656 ions were detected while 636 and 531 different ions were obtained using positive (pos) mode and negative (neg) mode, respectively. Among these ions, the 33 and 7 different ions were specific in L. dispar herbivory and mechanical wounding in pos mode while 46 and 4 different ions in L. dispar herbivory and mechanical wounding in neg mode, respectively. The 3,666 specific DEGs in L. dispar herbivory group were classified into phenylpropanoid and flavonoid secondary metabolism pathways by comprehensive networks between transcriptomes and metabolomes. Conclusions: The current findings greatly improve our understanding of the induced defensive response in poplar plants against L. dispar infestation, and will contribute to develop insect-resistance poplar varieties.


Sign in / Sign up

Export Citation Format

Share Document