scholarly journals Full-Length Transcriptome-Wide Characteristic and Functional Identification of WRKY Family in Malus sieversii during the Valsa Canker Disease Response

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 790
Author(s):  
Xiaojie Liu ◽  
Yiheng Zhang ◽  
Tong Zhou ◽  
Xiaoshuang Li ◽  
Xuejing Wen ◽  
...  

WRKY transcription factors are one of the largest families in plants, playing important roles in regulating plant immunity. Malus sievesii has abundant genetic diversity and can offer various and high-quality gene resources. In this study, 112 putative MsWRKY proteins were identified from a full-length transcriptome of M. sieversii during the Valsa canker disease (caused by Valsa mali). The MsWRKY proteins were phylogenetically divided into three groups (I–III). Motif compositions of the MsWRKY proteins were clustered and fifteen conserved motifs were observed. Expression pattern analysis showed that thirty-four MsWRKY transcripts strongly responded to the V. mali infection, demonstrating that MsWRKY transcripts might play different roles during the response. Functional identifications were subsequently conducted with transient expressions, demonstrating that MsWRKY16, MsWRKY21, MsWRKY70, MsWRKY74 and MsWRKY85 positively regulated the resistant response. Besides, the MsWRKY21, MsWRKY70 and MsWRKY85 were dramatically induced by salicylic acid (SA), methyl-jasmonate acid (MeJA) and 1-aminocyclopropane-1-carboxylate (ACC), indicating that they play important roles in the regulatory resistance of V. mali infection. This work provides a comprehensive understanding of the WRKY family in M. sieversii and will build a foundation for future research of the potential disease resistances MsWRKY transcripts.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaojie Liu ◽  
Xiaoshuang Li ◽  
Xuejing Wen ◽  
Yan Zhang ◽  
Yu Ding ◽  
...  

Abstract Background Valsa canker is a serious disease in the stem of Malus sieversii, caused by Valsa mali. However, little is known about the global response mechanism in M. sieversii to V. mali infection. Results Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen V. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8139 were DETs. Total 1336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of V. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. Conclusions The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to V. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen V. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.


2020 ◽  
Author(s):  
Xiaojie Liu ◽  
Xiaoshuang Li ◽  
Xuejing Wen ◽  
Yan Zhang ◽  
Yu Ding ◽  
...  

Abstract Background: Cytospora canker is a serious disease in the stem of Malus sieversii, caused by Cytospora mali. However, little is known about the global response mechanism in M. sieversii to C. mali infection. Results: Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen C. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8,139 were DETs. Total 1,336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3,780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of C. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. Conclusions: The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to C. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen C. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.


2020 ◽  
Author(s):  
Xiaojie Liu ◽  
Xiaoshuang Li ◽  
Xuejing Wen ◽  
Yan Zhang ◽  
Yu Ding ◽  
...  

Abstract Background Cytospora canker is a serious disease in the stem of Malus sieversii, caused by Cytospora mali. However, little is known about the global response mechanism in M. sieversii to C. mali infection. Results Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen C. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8,139 were DETs. Total 1,336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3,780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of C. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. Conclusions The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to C. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen C. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.


2021 ◽  
Author(s):  
Xiaojie Liu ◽  
Xiaoshuang Li ◽  
Xuejing Wen ◽  
Yan Zhang ◽  
Yu Ding ◽  
...  

Abstract Background: Cytospora canker is a serious disease in the stem of Malus sieversii, caused by Cytospora mali. However, little is known about the global response mechanism in M. sieversii to C. mali infection. Results: Phytohormone jasmonic acid (JA) and salicylic acid (SA) profiles and transcriptome analysis were used to elaborate on the dynamic response mechanism. We determined that the JA was initially produced to respond to the necrotrophic pathogen C. mali infection at the early response stage, then get synergistically transduced with SA to respond at the late response stage. Furthermore, we adopted Pacific Biosciences (PacBio) full-length sequencing to identify differentially expressed transcripts (DETs) during the canker response stage. We obtained 52,538 full-length transcripts, of which 8,139 were DETs. Total 1,336 lncRNAs, 23,737 alternative polyadenylation (APA) sites and 3,780 putative transcription factors (TFs) were identified. Additionally, functional annotation analysis of DETs indicated that the wild apple response to the infection of C. mali involves plant-pathogen interaction, plant hormone signal transduction, flavonoid biosynthesis, and phenylpropanoid biosynthesis. The co-expression network of the differentially expressed TFs revealed 264 candidate TF transcripts. Among these candidates, the WRKY family was the most abundant. The MsWRKY7 and MsWRKY33 were highly correlated at the early response stage, and MsWRKY6, MsWRKY7, MsWRKY19, MsWRKY33, MsWRKY40, MsWRKY45, MsWRKY51, MsWRKY61, MsWRKY75 were highly correlated at the late stage. Conclusions: The full-length transcriptomic analysis revealed a series of immune responsive events in M. sieversii in response to C. mali infection. The phytohormone signal pathway regulatory played an important role in the response stage. Additionally, the enriched disease resistance pathways and differentially expressed TFs dynamics collectively contributed to the immune response. This study provides valuable insights into a dynamic response in M. sieversii upon the necrotrophic pathogen C. mali infection, facilitates understanding of response mechanisms to canker disease for apple, and provides supports in the identification of potential resistance genes in M. sieversii.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cong Li ◽  
Qiuyi Shen ◽  
Xiang Cai ◽  
Danni Lai ◽  
Lingshang Wu ◽  
...  

Abstract Background Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. Results In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. Conclusions The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


2004 ◽  
Vol 31 (1) ◽  
pp. 73 ◽  
Author(s):  
Zhihua Liao ◽  
Qiumin Tan ◽  
Yourong Chai ◽  
Kaijing Zuo ◽  
Min Chen ◽  
...  

In plants, the first committed step in the pathway for biosynthesis of isoprenoids is catalysed by 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC: 1.1.1.34). Here we report for the first time the cloning of a full-length cDNA encoding HMGR (Tm–HMGR) from a taxol-producing gymnosperm, Taxus media Rehder. The full-length cDNA of Tm–HMGR (GenBank accession number: AY277740) was 2307 base pairs (bp), with a 1791-bp open reading frame (ORF) encoding a 596-amino-acid polypeptide. Bioinformatic analysis revealed that Tm–HMGR contained two trans-membrane domains and a catalytic domain, and showed high homology to other plant HMGRs. Phylogenetic analysis indicated that Tm–HMGR was more ancient than other plant HMGRs. The structural modelling showed that Tm–HMGR had the typical spatial structure of HMGRs whose catalytic domains could be folded and divided into three spatial domains, L-domain, N-domain and S-domain. Southern blot analysis revealed that Tm–HMGR belonged to a small HMGR gene family. Northern blot analysis showed that Tm–HMGR was expressed in roots, stems and needles, with higher expression in stems and needles than in roots. Functional complementation of Tm–HMGR in a HMGR-deficient mutant yeast demonstrated that Tm–HMGR mediated the biosynthesis of mevalonate and provided the general precursor for taxol biosynthesis.


Gene ◽  
2019 ◽  
Vol 707 ◽  
pp. 178-188 ◽  
Author(s):  
Yongrui He ◽  
Ruirui Jia ◽  
Jingjing Qi ◽  
Shanchun Chen ◽  
Tiangang Lei ◽  
...  

2007 ◽  
Vol 28 (2) ◽  
pp. 141-145 ◽  
Author(s):  
Yong Wang ◽  
Zhenggang Wang ◽  
Juan Li ◽  
Yajun Wang ◽  
Frederick C. C. Leung

The generation of full-length cDNA databases is essential for functional genomics studies as well as for correct annotation of species genomic sequences. Human and mouse full-length cDNA projects have provided the biomedical research community with a large amount of gene information. Recent completion of the chicken genome sequence draft now enables a similar full-length cDNA project to be initiated for this species. In this report, we introduce the development of a chicken full-length cDNA database, which will facilitate future research work in this biological system. In this project, chicken expressed sequence tags (ESTs) were aligned onto human and mouse full-length cDNAs (or open reading frames) on the basis of their similarity. More than 588,000 chicken ESTs were aligned to ∼170,000 full-length human and mouse templates obtained from the NEDO, RIKEN, and MGC databases. Many of these templates have known biological functions, and their orthologous chicken genes in the EMBL database are also provided in our database, which is available at http://bioinfo.hku.hk/chicken/ . We will continue to collect known chicken full-length cDNAs to update the database for public use. The cDNA alignment results presented herein and on our database will be useful for animal science and veterinary researchers wishing to clone and to confirm full-length chicken cDNAs of interest.


Author(s):  
Wanyu Xu ◽  
Chen Chen ◽  
Ningning Gou ◽  
Mengzhen Huang ◽  
Tana Wuyun ◽  
...  

The NAC (NAM, ATAF1/2, and CUC2) family is a group of plant-specific transcription factors that have vital roles in the growth and development of plants, and especially in fruit and kernel development. This study aimed to identify members of the NAC gene (PsNACs) family and investigate their functions in siberian apricot (Prunus sibirica). A total of 102 predicted PsNAC proteins (PsNACs) were divided into 14 clades and the genes were mapped to the eight chromosomes in siberian apricot. The PsNACs of the same clade had similar structures. A synteny analysis showed that the PsNACs had close relationships with the NAC genes of japanese apricot (Prunus mume). An expression pattern analysis of the PsNACs revealed many differences in various tissues and at different stages of fruit and kernel development. All eight PsNACs in clade XI have crucial roles in fruit and kernel development. Seven PsNACs (PsNACs 18, 64, 23, 33, 9, 4, and 50) in clades I, III, VI, VII, and XIII are related to fruit development. Eight PsNACs (PsNACs 6, 13, 46, 51, 41, 67, 37, and 59) in clades I, II, V, VIII, and XIII are involved in fruit ripening. Five PsNACs (PsNACs 6, 94, 41, 32, and 17) in clades I, IV, V, VII, and XI regulated the rapid growth of the kernel. Four PsNACs (PsNACs 50, 4, 67, and 84) in clades I, III, V, and XIII affected the hardening of the kernel. Four PsNACs (PsNACs 17, 82, 13, and 51) in clades II, XI, and IX acted on kernel maturation. We have characterized the NAC genes in siberian apricot during this study. Our results will provide resources for future research of the biological roles of PsNACs in fruit and kernel development in siberian apricot.


Sign in / Sign up

Export Citation Format

Share Document