scholarly journals Assessing Biomass Removal and Woody Debris in Whole-Tree Harvesting System: Are the Recommended Levels of Residues Ensured?

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 807
Author(s):  
Abdelwahab Bessaad ◽  
Isabelle Bilger ◽  
Nathalie Korboulewsky

Forest biomass is a sustainable source of renewable energy and a valuable alternative to finite fossil fuels. However, its overharvesting may lead to soil nutrient depletion and threaten future stand productivity, as well as affect the habitat for biodiversity. This paper provides quantitative data on biomass removal, fine woody debris [d ≤ 7 cm], and coarse woody debris [d > 7 cm] left on the forest floor in whole tree harvesting systems. Using tree allometric equations and inventory field methods for woody debris estimation, we assessed biomass removal on nine fuelwood harvesting sites in Central France, as well as fine and coarse woody debris left on the sites. The aboveground biomass estimates showed a high variability between the studied sites, it varied between 118 and 519 Mg ha−1. However, less variability was found among sites managed as coppice-with-standards 174 ± 56 Mg ha−1. Exported biomass was 107 ± 42 Mg ha−1 on average, including 35 ± 9% of fine wood. The amounts of both fine and coarse woody debris left on sites were generally less than 10% of the total harvested biomass in 2/3 of the studied sites. These amounts are lower than the minimum retention levels recommended by the sustainable forest biomass harvesting guidelines. Therefore, more technical effort and additional management measures should be taken to ensure more woody debris, especially in poor forest soils and thus, to guarantee a sustainable biomass harvesting.

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 763 ◽  
Author(s):  
Cho ◽  
Choi ◽  
Paik ◽  
Mun ◽  
Cha ◽  
...  

Interest in the production of renewable energy using forest biomass is increasing in South Korea, and improved knowledge on operations logistics to lower biomass harvesting costs is needed. This study aimed to build a low-cost forest-biomass harvesting system by analyzing the costs of two integrated (cut-to-length and whole-tree) harvesting systems for logs and logging residues. Two integrated harvesting systems were carried out in the clear-cut mixed forest on a steep slope. Compared to the cut-to-length system that separately extracts logs and logging residues in a forest, the cable whole-tree harvesting system can save $8.8/green weight ton (Gwt) because it requires no additional yarding operation cost of logging residues. Moreover, a breakeven analysis shows that the required machine utilization rates that favor whole-tree harvesting systems over cut-to-length harvesting were more than 70% for cable harvesting systems. The introduction of the whole-tree harvesting system is, therefore, required to produce forest biomass at a low cost. In the future, studies on forest-biomass processing and transportation systems will be needed to provide a biomass feedstock supply cost from stump to biomass power plant.


1998 ◽  
Vol 78 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Brian D. Titus ◽  
Bruce A. Roberts ◽  
Keith W. Deering

The effects of conventional stem-only and whole-tree harvesting on nutrient losses in biomass removal and in leachate fluxes over a 3-yr period after cutting three white birch stands in central Newfoundland were determined. Losses of nutrients in biomass were proportionately greater with more intensive harvesting as tree components with higher nutrient concentrations (branches, foliage) were removed. Stem-only harvesting removed 126, 9, 51, 126 and 23 kg ha–1 of N, P, K, Ca and Mg in biomass, respectively. Whole-tree harvesting led to a 19% increase in biomass removal as compared to stem-only harvesting, but nutrient removals with whole-tree harvesting increased by 127% for N, 138% for P, 151% for K, 72% for Ca and 90% for Mg. Nutrient losses in deep percolation of soil solution during the first 3 yr after harvesting were generally greater following stem-only than whole-tree harvesting. This may be the result of increased leaching from slash, increased mineralization beneath slash, and retardation by slash of the successional vegetation that could act as a nutrient sink. In the first 3 yr following harvesting, leaching losses after whole-tree harvesting were 4, 0.2, 8, 23 and 7 kg ha–1 of N, P, K, Ca and Mg, respectively, as compared with 9, 0.1, 7, 28 and 9 kg ha–1 of N, P, K, Ca and Mg after stem-only harvesting. Nutrient losses in leachate were generally small compared to losses in biomass removal. Key words: Intensive harvesting; slash; nutrient budget; sustainable site productivity; Betula papyrifera (Marsh.)


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Iveta Desaine ◽  
Annija Kārkliņa ◽  
Roberts Matisons ◽  
Anna Pastare ◽  
Andis Adamovičs ◽  
...  

The increased removal of forest-derived biomass with whole-tree harvesting (WTH) has raised concerns about the long-term productivity and sustainability of forest ecosystems. If true, this effect needs to be factored in the assessment of long-term feasibility to implement such a drastic forest management measure. Therefore, the economic performance of five experimental plantations in three different forest types, where in 1971 simulated WTH event occurred, was compared with pure, planted and conventionally managed (CH) Norway spruce stands of similar age and growing conditions. Potential incomes of CH and WTH stands were based on timber prices for period 2014–2020. However, regarding the economics of root and stump biomass utilization, they were not included in the estimates. In any given price level, the difference of internal rate of return between the forest types and selected managements were from 2.5% to 6.2%. Therefore, Norway spruce stands demonstrate good potential of independence regardless of stump removal at the previous rotation.


1974 ◽  
Vol 4 (4) ◽  
pp. 530-535 ◽  
Author(s):  
Edwin H. White

This paper reports the effects of whole-tree harvesting of eight cottonwood stands on the soil nutrient pool. The data indicate possible site degradation by depletion of soil reserves of N, P, and K but not Ca and Mg on a range of alluvial site conditions in Alabama. Foresters must establish the rate of nutrient removal in intensive tree cropping systems for a variety of species and sites and develop prescriptions to minimize the impact.


1984 ◽  
Vol 27 (1) ◽  
pp. 002-004 ◽  
Author(s):  
Cleveland J. Biller ◽  
Edward L. Fisher

1985 ◽  
Vol 9 (2) ◽  
pp. 81-84 ◽  
Author(s):  
James W. McMinn

Abstract Mixed upland hardwood-pine stands of low quality in the Upper Piedmont of Georgia were whole-tree harvested to 1-inch and 4-inch diameter limits in both winter and summer. Natural pine regeneration and hardwood sprouting were observed two growing seasons after harvesting. Early pine establishment was generally successful after winter harvesting but not after summer harvesting. Pine regeneration was excellent following the 1-inch winter harvest and acceptable following the 4-inch winter harvest. The treatment resulting in the best pine regeneration also produced the greatest coverage of hardwood sprouts.1


2015 ◽  
Vol 356 ◽  
pp. 101-111 ◽  
Author(s):  
P. Vangansbeke ◽  
A. De Schrijver ◽  
P. De Frenne ◽  
A. Verstraeten ◽  
L. Gorissen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document