scholarly journals Relation between Energy Efficiency and GHG Emissions in Drying Units Using Forest Biomass

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1056
Author(s):  
Débora Luana Pasa ◽  
Luana Dessbesell ◽  
Jorge Antonio de Farias ◽  
Dionatan Hermes

The impacts of climate change are inevitable and driven by increased levels of greenhouse gases (GHG) in the atmosphere, requiring mitigation and re-adaptation measures. In this context, this article critically analyzes the influence of drying technology type, forest biomass, and GHG emissions resulting from the energy required for drying agricultural crops, by presenting a case study of tobacco drying. In this study, the influence of increasing the technological level of drying unit (curing units CUs), using E. saligna and E. dunnii firewood and Pinus sp. pellets, was evaluated; considering consumption efficiency, energy efficiency, and concentration of gas emissions (CO, CO2, CXHY and NOX), as well as emission factors in tCO₂-eq. The results showed that when increasing the technological level of the CUs, there is a decrease in fuel consumption and emissions. The reduction can reach 60.28% for the amount of biomass consumed and 67.06% in emissions in tCO₂-eq; for the scenario of a production crop, using a CU with a continuous load (Chongololo) and firewood from E. dunnii. The use of pellets proved to be efficient, with the lowest consumption of biomass and emissions with more technological CUs.

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
E. Jäppinen ◽  
O.-J. Korpinen ◽  
T. Ranta

This study presents two case studies of 100 GWh of forest biomass supply: Rovaniemi in northern Finland and Mikkeli in south-eastern Finland. The study evaluates the effects of local biomass availability and road network properties on the greenhouse gas (GHG) emissions of these two supply chains. The local forest biomass availability around the case study locations, truck transportation distances, and road network properties were analyzed by GIS methods to produce accurate and site-dependent data for the transportation emission calculations. The GHG emissions were then assessed by LCA methods. The total transportation distance to Rovaniemi was 22% larger than to Mikkeli, but the transportation derived GHG emissions were 31% larger. The results highlight the fact that local conditions should always be taken into account when assessing the sustainability of biomass-based energy production.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2658 ◽  
Author(s):  
Eduardo Martínez-Gomariz ◽  
Luca Locatelli ◽  
María Guerrero ◽  
Beniamino Russo ◽  
Montse Martínez

Pluvial flooding in Badalona (Spain) occurs during high rainfall intensity events, which in the future could be more frequent according to the latest report from the Intergovernmental Panel on Climate Change (IPCC). In this context, the present study aims at quantifying the potential impacts of climate change for the city of Badalona. A comprehensive pluvial flood multi risk assessment has been carried out for the entire municipality. The assessment has a twofold target: People safety, based on both pedestrians’ and vehicles’ stability, and impacts on the economic sector in terms of direct damages on properties and vehicles, and indirect damages due to businesses interruption. Risks and damages have also been assessed for the projected future rainfall conditions which enabled the comparison with the current ones, thereby estimating their potential increment. Moreover, the obtained results should be the first step to assess the efficiency of adaptation measures. The novelty of this paper is the integration of a detailed 1D/2D urban drainage model with multiple risk criteria. Although, the proposed methodology was tested for the case study of Badalona (Spain), it can be considered generally applicable to other urban areas affected by pluvial flooding.


2016 ◽  
Vol 10 (1) ◽  
pp. 99-117 ◽  
Author(s):  
Alberto De Marco ◽  
Giulio Mangano ◽  
Fania Valeria Michelucci ◽  
Giovanni Zenezini

Purpose – The purpose of this paper is to suggest the usage of the project finance (PF) scheme as a suitable mechanism to fund energy efficiency projects at the urban scale and present its advantages and adoption barriers. Design/methodology/approach – A case study is developed to renew the traffic lighting system of an Italian town via replacement of the old lamps with new light-emitting diode (LED) technology. Several partners are involved in the case project to construct a viable PF arrangement. Findings – The case study presents the viability of the proposed PF scheme that provides for acceptable financial returns and bankability. However, it also shows that the need for short concession periods may call for a public contribution to the initial funding to make the project more attractive to private investors. Practical implications – This case study is a useful guideline for governments and promoters to using the PF arrangement to fund energy efficiency investments in urban settings. It helps designing an appropriate PF scheme and understanding the advantages of PF to reduce risk and, consequently, increase the debt leverage and profitability of energy efficiency projects. Originality/value – This paper contributes to bridging the gap about the lack of works addressing the implementation of the PF mechanism in the energy efficiency sector in urban areas. The importance of this paper is also associated with the shortage of traditional public finance faced by many cities that forces to seek for alternate forms of financing.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 461
Author(s):  
Isabel Azevedo ◽  
Vítor Leal

This paper proposes the use of decomposition analysis to assess the effect of local energy-related actions towards climate change mitigation, and thus improve policy evaluation and planning at the local level. The assessment of the impact of local actions has been a challenge, even from a strictly technical perspective. This happens because the total change observed is the result of multiple factors influencing local energy-related greenhouse gas (GHG) emissions, many of them not even influenced by local authorities. A methodology was developed, based on a recently developed decomposition model, that disaggregates the total observed changes in the local energy system into multiple causes/effects (including local socio-economic evolution, technology evolution, higher-level governance frame and local actions). The proposed methodology, including the quantification of the specific effect associated with local actions, is demonstrated with the case study of the municipality of Malmö (Sweden) in the timeframe between 1990 and 2015.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


Sign in / Sign up

Export Citation Format

Share Document