scholarly journals Color Classification and Texture Recognition System of Solid Wood Panels

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1154
Author(s):  
Zhengguang Wang ◽  
Zilong Zhuang ◽  
Ying Liu ◽  
Fenglong Ding ◽  
Min Tang

Solid wood panels are widely used in the wood flooring and furniture industries, and paneling is an excellent material for indoor decoration. The classification of colors helps to improve the appearance of wood products assembled from multiple panels due to the differences in surface colors of solid wood panels. Traditional wood surface color classification mainly depends on workers’ visual observations, and manual color classification is prone to visual fatigue and quality instability. In order to reduce labor costs of sorting and to improve production efficiency, in this study, we introduced machine vision technology and an unsupervised learning technique. First-order color moments, second-order color moments, and color histogram peaks were selected to extract feature vectors and to realize data dimension reduction. The feature vector set was divided into different clusters by the K-means algorithm to achieve color classification and, thus, the solid wood panels with similar surface color were classified into one category. Furthermore, during twice clustering based on second-order color moment, texture recognition was realized on the basis of color classification. A sample of beech wood was selected as the research object, not only was color classification completed, but texture recognition was also realized. The experimental results verified the effectiveness of the technical proposal.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 336
Author(s):  
Zilong Zhuang ◽  
Ying Liu ◽  
Fenglong Ding ◽  
Zhengguang Wang

Solid wood flooring has good esthetic properties and is an excellent material for interior decoration. To meet the artistic effects of specific interior decoration requirements, the color of solid wood flooring needs to be coordinated. Thus, the color of the produced solid wood flooring needs to be sorted to meet the individual needs of customers. In this work, machine vision, deep learning methods, and ensemble learning methods are introduced to reduce the cost of manual sorting and improve production efficiency. The color CCD camera was used to collect 108 solid wood floors of three color grades provided by the company and obtained 108 18,000 × 2048 pixel wood images. A total of 432 images were obtained after data expansion. Deep learning methods, such as VGG16, DenseNet121, and XGBoost, were compared. After using XGBoost to filter the features, the accuracy of solid wood flooring color classification was 97.22%, the training model time was 5.27 s, the average test time for each picture was 51 ms, and a good result was achieved.


2011 ◽  
Vol 38 (1) ◽  
pp. 53-63 ◽  
Author(s):  
JUDITH AJANI

SUMMARYGlobal wood consumption trends are reviewed in the context of framing a coherent forest policy in the era of climate change. Over the period 1980 to 2007, global wood consumption has been essentially stagnant, increasing by only 0.4% per year. In contrast over the same period, global consumption of wood products increased steadily, paper by an average 3.2% per annum and solid wood products (sawn timber and wood panels) by 0.8% per annum. Wood saving explains these significantly different growth trajectories in unprocessed wood and processed wood products. Wood saving strategies include recycling paper (in particular), investing in higher yielding pulp technologies, substituting reconstituted wood panels for sawn timber and plywood and growing high pulp-yielding trees in a plantation regime. China's rapidly growing wood products industry has lifted wood saving to a new high. Consistent with the theory of induced innovation, China has so far avoided triggering a global wood shortage and associated wood price increases through a progression of strategies: successful pre-emptive price negotiations, increased use of recycled paper, adoption of high-yielding pulp technologies, substitution of reconstituted wood panels for sawn timber and tree planting substituting for natural forest supply. If China's current wood saving strategies were emulated worldwide, through increased use of recycled paper in particular, and to a lesser extent, substitution of reconstituted wood panels for sawn timber and plywood, the already low growth in global wood consumption would flatten further and perhaps start to decline. These economic realities in the wood products industry align positively with the interlinked imperatives of biodiversity conservation and carbon storage in natural forests, if wood-saving is converted to forest-saving.


2005 ◽  
Vol 156 (3-4) ◽  
pp. 100-103
Author(s):  
Rudolf Popper ◽  
Peter Niemz ◽  
Gerhild Eberle

The water vapour diffusion resistance of timber materials were tested in a wet climate (relative humidity ranging from 100%to 65% at 20 °C) and in a dry climate (relative humidity ranging from 0% to 65% and from 0% to 35% at 20 °c) with variation by relative humidity and vapour pressure gradient. The diffusion resistance of multilayer solid wood panels lies under or within the range of the solid wood (spruce), tending even to a lower range. This can be attributed to the loosely inserted middle lamella of the used solid wood panels, which were not correctly glued by the manufacturer. The diffusion resistance of the solid wood panels increases with decreasing moisture content and decreasing panel thickness, as well as with increasing water vapour gradient from 818 to 1520 Pa. There were clear differences between the tested timber materials. The diffusion resistance of particle composites is strongly dependent on the specific gravity. Due to laminar particles OSBs(Oriented Strand Boards) have a larger diffusion resistance than chipboards. The water vapour diffusion resistance of OSBs lies within the range of plywood.


2021 ◽  
Vol 30 (1) ◽  
pp. e002
Author(s):  
Juan I. Fernández-Golfín ◽  
Maria Conde Garcia ◽  
Marta Conde Garcia

Aim of study: To obtain improved models to predict, with an error of less than ± 2.0%, the gravimetric moisture content in four different softwoods commonly present in the Spanish and European markets, based on electrical resistance measurements. This improved moisture content estimation is useful not only for assessing the quality of wood products, especially in the case of laminated products, during the transformation and delivery process, but also for accurately monitoring the evolution of moisture in wood present in bridges and buildings, which is of great importance for its maintenance and service life improvement.Area of study: The study was carried out on samples of Scots, laricio, radiata and  maritime pines of Spanish provenances.Material and methods: On 50x50x20 mm3 solid wood samples (36 per species, 9 per condition), conditioned at 20ºC (±05ºC) and 40±5%, 65±5%, 80±5% or 90±5% Relative Humidity (RH), electrical resistance and oven-dry moisture content was measured. The Samuelsson's model was fitted to data to explain the relationship between the two variables. The accuracy of the model was evaluated by the use of an external sample.Main results: With the proposed mathematical functions the wood moisture content can be estimated with an error of ±0.9% in the four species, confirming the effectiveness of this nondestructive methodology for accurate estimation and monitoring of moisture content.Research highlights: our results allow the improvement of the moisture content estimation technique by resistance-type methodologies.Keywords: Resistance-type moisture meter; species correction.Abbreviations used: MC: Moisture content; RH: relative Humidity; R: electrical resistance; RP: wood electrical resistance measured parallel to the grain; RT: electrical resistance measured perpendicular (transversally) to the grain; GM-MC: gravimetrically measured moisture content.


2019 ◽  
Vol 5 (1) ◽  
pp. 85
Author(s):  
Ramdhan Taufik ◽  
Erma Desmaliana ◽  
Amatulhay Pribadi

ABSTRAKKondisi geografis Indonesia memiliki struktur tektonik kompleks. Kondisi ini membuat perencanaan rumah tinggal 2 (dua) lantai membutuhkan pertimbangan khusus dari segi kekuatan dan kekakuan. Penggunaan material kayu sebagai bahan konstruksi di Indonesia masih jarang digunakan. Kayu glulam adalah suatu produk kayu rekayasa yang dibuat dari beberapa bilah kayu yang direkatkan dengan arah sejajar serat menggunakan perekat berupa lem. Penelitian ini bertujuan untuk mengidentifikasi respon struktur pada rumah tinggal menggunakan material kayu glulam dan solid dengan bantuan program ETABS 2016. Berdasarkan analisis yang telah dilakukan, diperoleh nilai periode struktur, gaya geser dasar, dan simpangan antar lantai antara seluruh model menunjukan hasil yang berbeda, perbedaan diakibatkan dari hasil konversi berat jenis dan modulus of elastisity berdasarkan BS EN 1194:1999. Berdasarkan analisis non-linier pushover didapatkan bahwa kayu glulam Nyatoh (kayu kelas III) berada pada level pada kinerja B to IO (Immediate Occupancy), dimana hasil tersebut tidak berbeda jauh dengan kayu solid Bangkirai (kayu kelas I).Kata Kunci: rumah tinggal, kayu glulam, non-linier pushover ABSTRACTGeographical condition of Indonesia has a complex tectonic structure. These conditions create  2-storyhome-planning that require special consideration in terms of strength and rigidity. The use of wood as a construction material in Indonesia is still rarely used. Glulam wood is a wood products engineering made from wooden slats several glued with the direction of the parallel fibers using adhesives. This research aims to identify the structure of the response at home using basic material glulam and solid wood with the help of ETABS 2016 programs. Based on the analysis that has been done, obtained the value of the structure periode, base shear force, and interstory drift between all models show different results, the difference is due to the results of specific gravity conversion and modulus of elasticity base on BS EN 1194:1999. Based on non-linear pushover analysis, it shows that Nyatoh glulam wood (class III wood) was at the level of the B to IO (Immediate Occupancy) performance, where the results were not much different from Bangkirai solid wood (class I wood).Keywords: home livingstructure, glulam wood, non-linear pushover


Sign in / Sign up

Export Citation Format

Share Document