scholarly journals Chronically Low Nutrient Concentrations in Tree Rings Are Linked to Greater Tree Vulnerability to Drought in Nothofagus dombeyi

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1180
Author(s):  
Ester González de Andrés ◽  
María Laura Suárez ◽  
José Ignacio Querejeta ◽  
J. Julio Camarero

Forest dieback and mortality episodes triggered by droughts are receiving increasing attention due to the projected increases in these extreme climate events. However, the role played by nutrient impairment in dieback is understudied, despite interactions among carbon-water balances and nutrition. Here, we followed a comparative analysis of long-term growth, intrinsic water-use efficiency (iWUE), oxygen isotopes (δ18O) and wood-nutrient composition patterns between living (L) and dead (D) trees of a Nothofagus dombeyi population, showing dieback in Argentina. The onset of the growth decline of D trees occurred ca. 40 years before death. These trees showed higher iWUE, pointing to higher drought stress. Their lower δ18O values, together with the uncoupling between δ18O and leaf-level processes, suggested a deeper source of water uptake for this vigor class. D trees showed a poorer nutritional status than L trees that likely amplified the dieback. This was supported by numerous positive associations of P- and K-concentrations in wood and related ratios with iWUE, δ18O and tree growth. Therefore, drought-related nutrient deterioration can significantly contribute to dieback and be an early warning signal of impending tree death.

1999 ◽  
Vol 26 (5) ◽  
pp. 421 ◽  
Author(s):  
J. M. Escalona ◽  
J. Flexas ◽  
H. Medrano

Long-term induced water stress in field-grown grapevine leads to a progressive decline of stomatal conductance, accompanied by a decrease in CO 2 assimilation (40%). The apparent quantum yield also decreases (59%), which may reflect a relative increase in alternative processes for electron consumption. There is also a shift to non-stomatal regulation, as judged from significant depletions (37%) in maximum photosynthesis rate at saturating CO 2 related to limited ribulose biphosphate (RuBP) regeneration, whereas small, non-significant effects are observed on carboxylation efficiency. A high correlation (87%) between photosynthesis and stomatal conductance is observed for all experimental data and declines in intercellular CO 2 concentration parallel reductions in stomatal conductance. The data show that field response of grapevines to increasing soil water deficit involves stomatal and non-stomatal effects but, due to gradually induced drought, regulation mechanisms able to adjust mesophyll capacity to the average CO 2 supply. The non-stomatal adjustment seems to be exerted mainly in metabolic pathways related with the RuBP regeneration. Contrasting characteristics were observed for both cultivars. Tempranillo exploited the non-stressful conditions successfully, whereas Manto Negro, responding to its reputation as more drought resistant, showed a higher intrinsic water use efficiency, particularly for low water availability. This advantage seems to be due to lower non-stomatal limitations.


Chemosphere ◽  
2003 ◽  
Vol 50 (2) ◽  
pp. 217-222 ◽  
Author(s):  
S.W. Leavitt ◽  
S.B. Idso ◽  
B.A. Kimball ◽  
J.M. Burns ◽  
A. Sinha ◽  
...  

2000 ◽  
Vol 27 (1) ◽  
pp. 87 ◽  
Author(s):  
J. M. Escalona ◽  
J. Flexas ◽  
H. Medrano

Long-term induced water stress in field-grown grapevine leads to a progressive decline of stomatal conductance, accompanied by a decrease in CO 2 assimilation (40%). The apparent quantum yield also decreases (59%), which may reflect a relative increase in alternative processes for electron consumption. There is also a shift to non-stomatal regulation, as judged from significant depletions (37%) in maximum photosynthesis rate at saturating CO 2 related to limited ribulose biphosphate (RuBP) regeneration, whereas small, non-significant effects are observed on carboxylation efficiency. A high correlation (87%) between photosynthesis and stomatal conductance is observed for all experimental data and declines in intercellular CO 2 concentration parallel reductions in stomatal conductance. The data show that field response of grapevines to increasing soil water deficit involves stomatal and non-stomatal effects but, due to gradually induced drought, regulation mechanisms able to adjust mesophyll capacity to the average CO 2 supply. The non-stomatal adjustment seems to be exerted mainly in metabolic pathways related with the RuBP regeneration. Contrasting characteristics were observed for both cultivars. Tempranillo exploited the non-stressful conditions successfully, whereas Manto Negro, responding to its reputation as more drought resistant, showed a higher intrinsic water use efficiency, particularly for low water availability. This advantage seems to be due to lower non-stomatal limitations.


2020 ◽  
Vol 16 (4) ◽  
pp. 1509-1521
Author(s):  
Tammo Reichgelt ◽  
William J. D'Andrea ◽  
Ailín del C. Valdivia-McCarthy ◽  
Bethany R. S. Fox ◽  
Jennifer M. Bannister ◽  
...  

Abstract. Rising atmospheric CO2 is expected to increase global temperatures, plant water-use efficiency, and carbon storage in the terrestrial biosphere. A CO2 fertilization effect on terrestrial vegetation is predicted to cause global greening as the potential ecospace for forests expands. However, leaf-level fertilization effects, such as increased productivity and water-use efficiency, have not been documented from fossil leaves in periods of heightened atmospheric CO2. Here, we use leaf gas-exchange modeling on a well-preserved fossil flora from early Miocene New Zealand, as well as two previously published tropical floras from the same time period, to reconstruct atmospheric CO2, leaf-level productivity, and intrinsic water-use efficiency. Leaf gas-exchange rates reconstructed from early Miocene fossils, which grew at southern temperate and tropical latitudes when global average temperatures were 5–6 ∘C higher than today, reveal that atmospheric CO2 was ∼450–550 ppm. Early Miocene CO2 was similar to projected values for 2040 CE and is consistent with an Earth system sensitivity of 3–7 ∘C to a doubling of CO2. The Southern Hemisphere temperate leaves had higher reconstructed productivity than modern analogs, likely due to a longer growing season. This higher productivity was presumably mirrored at northern temperate latitudes as well, where a greater availability of landmass would have led to increased carbon storage in forest biomass relative to today. Intrinsic water-use efficiency of both temperate and tropical forest trees was high, toward the upper limit of the range for modern trees, which likely expanded the habitable range in regions that could not support forests with high moisture demands under lower atmospheric CO2. Overall, early Miocene elevated atmospheric CO2 sustained globally higher temperatures, and our results provide the first empirical evidence of concomitant enhanced intrinsic water-use efficiency, indicating a forest fertilization effect.


Sign in / Sign up

Export Citation Format

Share Document