scholarly journals Conservation of Waterlogged Wood—Past, Present and Future Perspectives

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1193
Author(s):  
Magdalena Broda ◽  
Callum Hill

This paper reviews the degradation, preservation and conservation of waterlogged archaeological wood. Degradation due to bacteria in anoxic and soft-rot fungi and bacteria in oxic waterlogged conditions is discussed with consideration of the effect on the chemical composition of wood, as well as the deposition of sulphur and iron within the structure. The effects on physical properties are also considered. The paper then discusses the role of consolidants in preserving waterlogged archaeological wood after it is excavated as well as issues to be considered when reburial is used as a means of preservation. The use of alum and polyethylene glycol (PEG) as consolidants is presented along with various case studies with particular emphasis on marine artefacts. The properties of consolidated wood are examined, especially with respect to the degradation of the wood post-conservation. Different consolidants are reviewed along with their use and properties. The merits and risks of reburial and in situ preservation are considered as an alternative to conservation.

Holzforschung ◽  
2020 ◽  
Vol 74 (11) ◽  
pp. 1043-1051
Author(s):  
Åke Henrik-Klemens ◽  
Katarina Abrahamsson ◽  
Charlotte Björdal ◽  
Alexandra Walsh

AbstractThe weakened microstructure of archaeological wood (AW) objects from waterlogged environments necessitates consolidation to avoid anisotropic shrinkage upon drying. Polymer impregnation through submergence or spraying treatments is commonly applied, and for larger and thicker objects, the impregnation period can stretch over decades. Thus, for efficient treatment, continuous monitoring of the impregnation status is required. Today, such monitoring is often destructive and expensive, requiring segments for extraction and chromatographic quantification. This study proposes an in situ Raman spectroscopic method for quantification of polyethylene glycol (PEG) in waterlogged AW. A calibration model was built on standards of PEG, cellulose powder, and milled wood lignin using orthogonal partial least squares (OPLS). The OPLS model had a strong linear relationship, and the PEG content in wood of varying degrees of degradation could be determined. However, the accuracy of the model was low with a root mean square error of prediction of 11 wt%. The low accuracy was traced to the heterogeneity in the calibration and validation set samples with regard to the small probing volume of the confocal instrumental setup.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Emily McHale ◽  
Calin C. Steindal ◽  
Hartmut Kutzke ◽  
Tore Benneche ◽  
Stephen E. Harding

2019 ◽  
Vol 50 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Wai Wai Lwin ◽  
Napaphol Puyathorn ◽  
Setthapong Senarat ◽  
Jongjan Mahadlek ◽  
Thawatchai Phaechamud

2013 ◽  
Vol 12 (4) ◽  
pp. 417-425

Although solar salterns worldwide use seawater of identical chemical composition as the raw material for salt production, the size and quality of the halite crystals that precipitate in the crystallizer ponds is highly variable. Biological processes have been implicated to be responsible for the differences observed, but the “missing link” between saltworks biology and solar salt quality has never unequivocally been identified. This paper presents an overview of the different organic chemicals that are formed by the members of the microbial communities in saltern evaporation and crystallizer ponds as osmotic stabilizers as well as different compounds formed during further microbial metabolism of those osmotic solutes. Examination of the in situ concentrations and the possible role of glycerol, glycine betaine, ectoine, dihydroxyacetone, acetate, lactate, and other organic compounds failed to identify one or more compounds that may accumulate at concentrations high enough to significantly modify the formation of sodium chloride crystals in the salterns and to negatively influence the quality of the salt produced.


Author(s):  
J.R. Mcintosh

The mitotic apparatus is a structure of obvious biological and medical interest, but it has proved to be a difficult cellular machine to understand. The chemical composition of the spindle is only slightly elucidated, largely because of the difficulties in preparing useful isolates of the structure. Chemical studies of the mitotic spindle have been reviewed elsewhere (Mcintosh, 1977), and will not be discussed further here. One would think that structural studies on the mitotic apparatus (MA) in situ would be straightforward, but even with this approach there is some disagreement in the results obtained with various methods and by different investigators. In this paper I will review briefly the approaches which have been used in structural studies of the MA, pointing out the strengths and problems of each approach. I will summarize the principal findings of the different methods, and identify what seem to be fruitful avenues for further work.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (4) ◽  
pp. 29-33
Author(s):  
LEE A. GOETZ ◽  
AJI P. MATHEW ◽  
KRISTIINA OKSMAN ◽  
ARTHUR J. RAGAUSKAS

The thermal stability and decomposition of in-situ crosslinked nanocellulose whiskers – poly(methyl vinyl ether-co-maleic acid) – polyethylene glycol formulations (PMVEMA-PEG), (25%, 50%, and 75% whiskers) – were investigated using thermal gravimetric analysis (TGA) methods. The thermal degradation behavior of the films varied according to the percent cellulose whiskers in each formulation. The presence of cellulose whiskers increased the thermal stability of the PMVEMA-PEG matrix.


2020 ◽  
Author(s):  
Nicolò Maria della Ventura ◽  
Szilvia Kalácska ◽  
Daniele Casari ◽  
Thomas Edward James Edwards ◽  
Johann Michler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document