waterlogged archaeological wood
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 3)

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1193
Author(s):  
Magdalena Broda ◽  
Callum Hill

This paper reviews the degradation, preservation and conservation of waterlogged archaeological wood. Degradation due to bacteria in anoxic and soft-rot fungi and bacteria in oxic waterlogged conditions is discussed with consideration of the effect on the chemical composition of wood, as well as the deposition of sulphur and iron within the structure. The effects on physical properties are also considered. The paper then discusses the role of consolidants in preserving waterlogged archaeological wood after it is excavated as well as issues to be considered when reburial is used as a means of preservation. The use of alum and polyethylene glycol (PEG) as consolidants is presented along with various case studies with particular emphasis on marine artefacts. The properties of consolidated wood are examined, especially with respect to the degradation of the wood post-conservation. Different consolidants are reviewed along with their use and properties. The merits and risks of reburial and in situ preservation are considered as an alternative to conservation.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 268
Author(s):  
Carmen-Mihaela Popescu ◽  
Magdalena Broda

The goal of the study was to characterise chemical interactions between waterlogged archaeological wood and organosilicon compounds applied for its conservation to shed lights on the mechanism of wood dimensional stabilisation by the chemicals. Two alkoxysilanes (methyltrimethoxysilane and (3-mercaptopropyl) trimethoxysilane) and a siloxane (1,3-bis(diethylamino)-3-propoxypropanol)-1,1,3,3-tetramethyldisiloxane) were selected for the research since they already have been proven to effectively stabilise waterlogged wood upon drying. Fourier transform infrared spectroscopy was used for structural characterisation of the degraded wood and evaluation of reactivity of the applied chemicals with polymers in the wooden cell wall. The results obtained clearly show much stronger interactions in the case of alkoxysilanes than the siloxane, suggesting a different mechanism of wood stabilisation by these compounds. The results of this study together with other data obtained in our previous research on stabilisation of waterlogged archaeological wood with organosilicon compounds allow the conclusion that the mechanism of waterlogged wood stabilisation by the used alkoxysilanes is based on bulking the cell wall by silane molecules and wood chemical modification, while in the case of the applied siloxane, it builds upon filling the cell lumina.


2020 ◽  
Vol 8 (12) ◽  
pp. 2015
Author(s):  
Federica Antonelli ◽  
Marco Bartolini ◽  
Marie-Laure Plissonnier ◽  
Alfonso Esposito ◽  
Giulia Galotta ◽  
...  

Waterlogged archaeological wood is exposed to a high risk of biological degradation during the post-excavation phases of storage and restoration. For this reason, often biocides must be used to preserve wooden remains. In the present work three essential oils (cinnamon, wild thyme, and common thyme) were tested as possible alternative biocides to use in the preservation of waterlogged archaeological wood. The oils were first tested in vitro to establish the minimum inhibitory concentration (MIC) and to evaluate the biocidal activity on selected fungal strains. Then, the established MIC was applied on waterlogged archaeological wood samples and during an actual restoration treatment. The effectiveness of the oils was evaluated through cultural analyses, ATP quantification, and next-generation sequencing. The results showed that the oils caused a significant decrease in the vitality of fungal mycelia grown in vitro and of the microbiota present in treated wood and storage water. Furthermore, an influence on the composition of the bacterial communities of treated wood samples was observed. Although further tests are needed to evaluate interferences with the materials used during restoration procedures, essential oils could be considered as a possible alternative to the currently used biocide.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nanna Bjerregaard Pedersen ◽  
Jeannette Jacqueline Łucejko ◽  
Francesca Modugno ◽  
Charlotte Björdal

AbstractErosion bacteria are the main degraders of archaeological wood excavated from waterlogged environments. Light microscopy and analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) were exploited to study waterlogged archaeological wood (Pinus sylvestris L.) at different stages of bacterial decay. The research explored the biochemical changes related to erosion bacteria degradation of the secondary cell wall in the wood cells and the chemical changes related to abiotic processes induced by the long-term waterlogged burial environment. Erosion bacteria were demonstrated by chemical analysis to cause significant holocellulose depletion. Detailed analysis of the holocellulose and lignin pyrolysis products revealed only minor chemical changes in the residual structure even after heavy erosion bacteria decay. Chemical changes in the lignin polymer is associated to enzymatic unlocking of the lignocellulose to gain access to the holocellulose fraction of the cell wall. Chemical changes in the holocellulose fraction are suggested to stem from depolymerisation and from alterations in the polymer matrix of the residual wood cell wall structure. Interestingly, a difference was observed between the sound reference wood and the waterlogged archaeological wood without erosion bacteria decay, indicating that long-term exposure in waterlogged environments results in partial decay of the holocellulose even in absence of bacterial activity.


2020 ◽  
Vol 10 (13) ◽  
pp. 4636 ◽  
Author(s):  
Federica Antonelli ◽  
Alfonso Esposito ◽  
Giulia Galotta ◽  
Barbara Davidde Petriaggi ◽  
Silvano Piazza ◽  
...  

Waterlogged archaeological wood (WAW) is considered a precious material, first-hand account of past civilizations. Like any organic material, it is subjected to biodegradative action of microorganisms whose activity could be particularly fast and dangerous during the phases of excavation, storage and restoration. The present work aimed to characterize the microorganisms present in WAW during these tricky periods to evaluate the biological risk it is exposed to. The bacterial and fungal communities inhabiting woods coming from two archaeological sites (Pisa and Naples) were investigated through Next-Generation Sequencing (NGS). High-throughput sequencing of extracted DNA fragments was performed using the reversible terminator-based sequencing chemistry with the Illumina MiSeq platform. The analyses revealed that the two archaeological sites showed distinct richness and biodiversity, as expected. In all the WAWs, the bacterial community harbored mainly Proteobacteria, whereas Bacteroidetes was well represented only in Naples communities and taxa belonging to the phyla Chloroflexi only in the Pisa site. Concerning the fungal community, the two sites were dominated by different phyla: Ascomycota for Naples samples and Basidiomycota for Pisa. Interestingly, most of the identified bacterial and fungal taxa have cellulolytic or ligninolytic ability. These results provide new and useful background information concerning the composition of WAW microbiota and the threat it represents for this precious material.


Sign in / Sign up

Export Citation Format

Share Document