scholarly journals Carbon and Nitrogen Accumulation and Decomposition from Coarse Woody Debris in a Naturally Regenerated Korean Red Pine (Pinus densiflora S. et Z.) Forest

Forests ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 214 ◽  
Author(s):  
Nam Noh ◽  
Tae Yoon ◽  
Rae-Hyun Kim ◽  
Nicholas Bolton ◽  
Choonsig Kim ◽  
...  
Diversity ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 275 ◽  
Author(s):  
Jong-Kook Jung ◽  
Joon-Ho Lee

Since successful reforestation after the 1970s, Korean red pine (Pinus densiflora) forests have become the most important coniferous forests in Korea. However, the scarcity of evidence for biodiversity responses hinders understanding of the conservation value of Korean red pine forests. This study was conducted to explore the patterns of carabid beetle diversity and assemblage structures between broad-leaved deciduous forests and P. densiflora forests in the temperate region of central Korea. Carabid beetles were sampled by pitfall trapping from 2013 to 2014. A total of 66 species were identified from 9541 carabid beetles. Species richness in broad-leaved deciduous forests was significantly higher than that in pine forests. In addition, the species composition of carabid beetles in broad-leaved deciduous forests differed from that of P. densiflora forests. More endemic, brachypterous, forest specialists, and carnivorous species were distributed in broad-leaved deciduous forests than in P. densiflora forests. Consequently, carabid beetle assemblages in central Korea are distinctively divided by forest type based on ecological and biological traits (e.g., endemisim, habitat types, wing forms, and feeding guilds). However, possible variation of the response of beetle communities to the growth of P. densiflora forests needs to be considered for forest management based on biodiversity conservation in temperate regions, because conifer plantations in this study are still young, i.e., approximately 30–40-years old.


1994 ◽  
Vol 24 (10) ◽  
pp. 1989-1996 ◽  
Author(s):  
Glenn H. Stewart ◽  
Larry E. Burrows

The volume, biomass, and carbon and nitrogen content of coarse woody debris were measured on three 1-ha reference plots in old-growth Nothofagusfusca (Hook. f.) Oerst.–Nothofagusmenziesii (Hook. f.) Oerst. forest on the South Island of New Zealand. Two decay sequences for logs and one for standing dead trees (snags) were recognised from two-way indicator species analysis (TWINSPAN) of up to 30 variables related to physical characteristics and structural integrity. Wood volume (up to 800 m3•ha−1) and biomass were high (up to 300 Mg•ha−1), and the inside-out decay sequence from heartwood to sapwood was unusual compared with that of other temperate hardwood forests. Coarse woody debris represented significant carbon and nitrogen pools, with ca. 150 Mg•ha−1 and 370 kg•ha−1, respectively, in one stand. The coarse woody debris component of these broad-leaved evergreen hardwood forests was much higher than that reported for other temperate hardwood forests and approaches that of many northern hemisphere conifer forests. The large coarse woody debris pools are discussed in relation to live stand biomass, natural disturbances and tree mortality, and decomposition processes.


1999 ◽  
Vol 29 (12) ◽  
pp. 1926-1934 ◽  
Author(s):  
Matthew D Duvall ◽  
David F Grigal

Coarse woody debris (CWD) chronosequences were developed for managed and unmanaged red pine (Pinus resinosa Ait.) stands across the Great Lakes states. Throughout stand development, there is less CWD in managed than in unmanaged forests, and effects of management are strongest in young forests (0-30 years old). At stand initiation, CWD is 80% lower in managed than unmanaged forests, 20 200 versus 113 200 kg·ha-1, while at 90 years, CWD is 35% lower, 6600 versus 10 400 kg·ha-1. Timber management especially affects snags. In young managed forests, snag biomass is less than 1% of that in unmanaged forests, 150 versus 58 200 kg·ha-1, while log biomass is 80% lower, 5000 versus 22 800 kg·ha-1. This trend continues in mature forests (91-150 years old), where snag biomass is 75% lower in managed than in unmanaged forests, 1700 versus 6400 kg·ha-1. Management has relatively little impact on total log biomass of mature forests but increases the biomass of fresh logs nearly 10-fold, to 1400 versus 150 kg·ha-1. CWD in managed forests is highly variable, primarily related to thinning schedules in individual stands.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 333
Author(s):  
Kwan Joong Kim ◽  
Eun-Sang Hwang ◽  
Min-Jeong Kim ◽  
Ji-Ho Park ◽  
Dae-Ok Kim

Korean red pine (Pinus densiflora Sieb. et Zucc.) bark is a by-product of the wood industry and contains a high level of antioxidative phenolics including flavonoids, which have a variety of beneficial health effects. This study aimed to investigate the antihypertensive effects of P. densiflora bark extract (Korean red pine bark extract; KRPBE) in spontaneously hypertensive rats (SHRs). A group of Wistar-Kyoto rats as a normotensive group was orally fed tap water. Four groups of SHRs were orally fed tap water, captopril (a positive control), 50 mg/kg/day of KRPBE, and 150 mg/kg/day of KRPBE, respectively. Blood pressure of rats was measured once every week for seven weeks of oral administration. After seven weeks, the lungs, kidneys, and serum were collected from rats, then angiotensin-converting enzyme (ACE) activity, angiotensin II content, and malondialdehyde (MDA) content were determined. Blood pressure of the captopril- and KRPBE-treated groups was significantly lower than that of the SHR control group. The ACE activity, angiotensin II content, and MDA content significantly decreased in the captopril- and KRPBE-treated groups than those in the SHR control group. High-performance liquid chromatography analysis revealed six phenolics in KRPBE: protocatechuic acid, procyanidin B1, catechin, caffeic acid, vanillin, and taxifolin. KRPBE, which contains plenty of antioxidative phenolics, has antihypertensive effects partly due to reduction of ACE activity and angiotensin II content, and its antioxidative effect.


Sign in / Sign up

Export Citation Format

Share Document