scholarly journals Forest Floor and Mineral Soil Respiration Rates in a Northern Minnesota Red Pine Chronosequence

Forests ◽  
2017 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
Matthew Powers ◽  
Randall Kolka ◽  
John Bradford ◽  
Brian Palik ◽  
Martin Jurgensen

2007 ◽  
Vol 37 (6) ◽  
pp. 1118-1133 ◽  
Author(s):  
Rock Ouimet ◽  
Sylvie Tremblay ◽  
Catherine Périé ◽  
Guy Prégent

We assessed the organic C stocks and inferred their changes in vegetation biomass, forest floor, and soil using a 50 year chronosequence of red pine ( Pinus resinosa Ait.) plantations established on postagricultural fields in southern Quebec, Canada. The data come from soil and tree field surveys carried out in the 1970s in 348 sites. Organic C concentrations were usually measured in three major mineral soil horizons; for the remaining soil horizons, they were estimated using pedotransfer functions. The effect of soil order, drainage, and texture was analysed. Over 22 years, organic C accumulation rates (Mg C·ha–1·year–1) were 1.66 ± 0.03 in vegetation biomass, 0.56 ± 0.07 in forest floor, 0.86 ± 0.47 in loamy soils (0–100 cm), and  –0.18 ± 0.24 in sandy soils (0–100 cm). The greater rate of C accumulation in loamy soils was due to the contribution of the 30–100 cm subsoil layer. The overall net accumulation of organic C in these plantation ecosystems was estimated to 51.4 ± 4.8 Mg C·ha–1 at 22 years. Soils of these plantations acted as a C sink in the first two decades, particularly in loamy soils compared with sandy soils, with no major differences among soil order or drainage.



1994 ◽  
Vol 74 (4) ◽  
pp. 387-392 ◽  
Author(s):  
J. W. Fyles ◽  
B. Côté

The influence of 40 years of red pine and Norway spruce growth on forest floor and soil nutrient status was examined in a well-replicated series of plantation blocks established on abandoned agricultural land. Concentrations of N, P, K and Ca, and mass of organic matter and all nutrients in the forest floor were higher under spruce than under pine. In the mineral soil, concentrations of exchangeable K and Ca were higher under spruce whereas Mg, extractable P and mineralizable N did not differ between the species. Forest floor pH was higher under spruce but mineral soil pH did not differ between the species. The soil characteristics reflected litter chemistry of the two species. Relative to pine, spruce foliage litter was consistently higher in nutrient concentration and had lower acidity and higher ash bases. The results are inconsistent with the reputation of Norway spruce as a species that strongly acidifies soils, an observation that may be the result of elevated levels of Ca and K in our soils relative to those in other studies where acidification has been observed. This research demonstrates that soil fertility can be altered significantly by tree species effects over the period of a single rotation. Key words: Forest soil fertility, plantation, acidity, forest floor, leaf litter



2008 ◽  
Vol 38 (4) ◽  
pp. 647-655 ◽  
Author(s):  
S. Singh ◽  
B. D. Amiro ◽  
S. A. Quideau

Soil respiration and its spatial and temporal variation were studied at three boreal forest sites in central Saskatchewan, Canada, burned in 1998, 1989, and 1977. Soil respiration, soil temperature, and organic layer thickness were measured at 100 points in a grid pattern of 2 m × 2 m at each site in 2004 and 2005. The mean within-site spatial coefficient of variation was 35%, and the measurements were not spatially autocorrelated. We found no significant difference in variance between the two youngest sites (P > 0.05), whereas the older site showed significantly lower variance (P < 0.05). Soil respiration was not correlated with the forest floor organic layer thickness at any of the sites (R2 < 0.1). Removal of the forest floor layer reduced the soil respiration by 17% to 38%, depending on the site. Thus, the respiration from the mineral soil seemed to contribute a major fraction of the total soil respiration (62%–83%). Soil respiration was positively linearly related to the fine root biomass (R2 = 0.63–0.85, P < 0.05) at all sites. We conclude that variation in root biomass has a larger effect than differential forest floor organic layers on variation in soil respiration in young boreal postfire forests.



1989 ◽  
Vol 19 (6) ◽  
pp. 725-735 ◽  
Author(s):  
O. Q. Hendrickson ◽  
L. Chatarpaul ◽  
D. Burgess

Soil and water chemistry and soil-respiration activity were studied in a mature, mixed conifer and hardwood forest and in adjacent whole-tree harvest (WTH) and conventional harvest (CH) areas dominated by hardwood sprouts. Compared with the uncut mature forest, forest floor contents of N and K were lower in the WTH area 3 years after harvest; Ca and Mg were higher in the CH area, probably owing to inputs in logging slash. Mineral soil Ca and pH were higher in the harvested areas than in the uncut area. During the 2nd year after harvest, cation concentrations in forest floor leachate varied in the order WTH > CH > uncut area, but differences largely disappeared the next year. Soil water NO3 concentrations were slightly elevated in the CH area, but only 1.6 kg N•ha−1•year−1 leached below the rooting zone. Bulk precipitation K and Mg concentrations were lower in the WTH area than in the CH area owing to the loss of canopy leaching from the residual stand. Slightly higher amounts of cations were found in the snowpack under the mature forest canopy. Midwinter rains caused movement of NO3 and H within the snowpack. Despite the higher soil-respiration rates in the harvested areas, no differences in soil organic matter pools were observed relative to the uncut area; harvest-related inputs of slash, decaying roots, and stumps may have offset respiratory carbon losses. Current high nutrient demands of rapidly growing sprouts in the WTH area greatly exceed nutrient inputs in bulk precipitation; this may lead to future growth declines.



2006 ◽  
Vol 234 ◽  
pp. S195 ◽  
Author(s):  
Aydın Tüfekçioğlu ◽  
Mehmet Küçük ◽  
Bülent Sağlam ◽  
Ertuğrul Bilgili ◽  
Lokman Altun ◽  
...  


2014 ◽  
pp. 275-280 ◽  
Author(s):  
C. Bertolla ◽  
G. Caruso ◽  
R. Gucci




2010 ◽  
Vol 56 (6) ◽  
pp. 874-882 ◽  
Author(s):  
Kozue SAWADA ◽  
Shinya FUNAKAWA ◽  
Takashi KOSAKI


2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.



2010 ◽  
Vol 7 (1) ◽  
pp. 315-328 ◽  
Author(s):  
Q. Deng ◽  
G. Zhou ◽  
J. Liu ◽  
S. Liu ◽  
H. Duan ◽  
...  

Abstract. Global climate change in the real world always exhibits simultaneous changes in multiple factors. Prediction of ecosystem responses to multi-factor global changes in a future world strongly relies on our understanding of their interactions. However, it is still unclear how nitrogen (N) deposition and elevated atmospheric carbon dioxide concentration [CO2] would interactively influence forest floor soil respiration in subtropical China. We assessed the main and interactive effects of elevated [CO2] and N addition on soil respiration by growing tree seedlings in ten large open-top chambers under CO2 (ambient CO2 and 700 μmol mol−1) and nitrogen (ambient and 100 kg N ha−1 yr−1) treatments. Soil respiration, soil temperature and soil moisture were measured for 30 months, as well as above-ground biomass, root biomass and soil organic matter (SOM). Results showed that soil respiration displayed strong seasonal patterns with higher values observed in the wet season (April–September) and lower values in the dry season (October–March) in all treatments. Significant exponential relationships between soil respiration rates and soil temperatures, as well as significant linear relationships between soil respiration rates and soil moistures (below 15%) were found. Both CO2 and N treatments significantly affected soil respiration, and there was significant interaction between elevated [CO2] and N addition (p<0.001, p=0.003, and p=0.006, respectively). We also observed that the stimulatory effect of individual elevated [CO2] (about 29% increased) was maintained throughout the experimental period. The positive effect of N addition was found only in 2006 (8.17% increased), and then had been weakened over time. Their combined effect on soil respiration (about 50% increased) was greater than the impact of either one alone. Mean value of annual soil respiration was 5.32 ± 0.08, 4.54 ± 0.10, 3.56 ± 0.03 and 3.53 ± 0.03 kg CO2 m−2 yr−1 in the chambers exposed to elevated [CO2] and high N deposition (CN), elevated [CO2] and ambient N deposition (CC), ambient [CO2] and high N deposition (NN), and ambient [CO2] and ambient N deposition (CK as a control), respectively. Greater above-ground biomass and root biomass was obtained in the CN, CC and NN treatments, and higher soil organic matter was observed only in the CN treatment. In conclusion, the combined effect of elevated [CO2] and N addition on soil respiration was apparent interaction. They should be evaluated in combination in subtropical forest ecosystems in China where the atmospheric CO2 and N deposition have been increasing simultaneously and remarkably.



Sign in / Sign up

Export Citation Format

Share Document