Nitrogen storage and availability during stand development in a New Zealand Nothofagus forest

2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.


2006 ◽  
Vol 36 (1) ◽  
pp. 112-122 ◽  
Author(s):  
Lucie Jerabkova ◽  
Cindy E Prescott ◽  
Barbara E Kishchuk

Boreal mixedwood forests with varying proportions of coniferous and deciduous species are found throughout the North American continent. Maintenance of a deciduous component within boreal forests is currently favoured, as deciduous species are believed to promote faster nutrient turnover and higher nutrient availability. Results of comparisons of deciduous and coniferous forests are, however, inconsistent in supporting this generalization. We compared indices of soil nitrogen (N) availability in the forest floor and mineral soil of deciduous, mixed, and coniferous stands of boreal mixedwood forest in northwestern Alberta. Deciduous stands had higher N availability, reflected by higher pools of NH4-N and inorganic N in the forest floor. Forest floors of deciduous stands also tended to have higher concentrations of microbial N but did not have higher levels of NO3-N or higher rates of net nitrification. Mixed stands showed the highest rates of net N mineralization. Soil N availability was more closely related to litter N content than to litter decomposition rate. The variation among the forest types is likely attributable to vegetation, as topography is fairly uniform, stands do not differ in soil texture, and N-availability indices correlated directly with the proportion of deciduous trees.



1996 ◽  
Vol 26 (6) ◽  
pp. 1022-1031 ◽  
Author(s):  
David Paré ◽  
Yves Bergeron

Soil nutrient availability was assessed around stems of trembling aspen (Populustremuloides Michx.), white spruce (Piceaglauca (Moench) Voss), and paper birch (Betulapapyrifera Marsh.) that regenerated after fire 49, 77, and 123 years ago on a clayey soil of the southern boreal forest. For all stand ages, forest floor pH was greater by 0.5 unit under aspen than under other species, while the accumulation of organic matter and nutrients was generally greater in the forest floor of spruce. With time since fire, forest floor pH and mineral soil reserves of nitrogen (N) and exchangeable calcium declined significantly, while the C/N ratio increased, perhaps as a result of nutrient immobilization in the aggrading biomass. Net N mineralization and nitrification, measured by aerobic laboratory incubations, were higher under birch and aspen than under spruce in the forest floor and the mineral soil of the youngest stand (49 years old). However, in older stands, these parameters were significantly lower, and no significant differences were found between soils of deciduous and coniferous species. These results suggest that a decrease in N availability with time since fire was caused by factors other than the generally assumed succession to coniferous trees.



1993 ◽  
Vol 23 (6) ◽  
pp. 1052-1059 ◽  
Author(s):  
Rodney J. Keenan ◽  
Cindy E. Prescott ◽  
J.P. Hamish Kimmins

Biomass and C, N, P, and K contents of woody debris and the forest floor were surveyed in adjacent stands of old-growth western red cedar (Thujaplicata Donn)–western hemlock (Tsugaheterophylla (Raf.) Sarg.) (CH type), and 85-year-old, windstorm-derived, second-growth western hemlock–amabilis fir (Abiesamabilis (Dougl.) Forbes) (HA type) at three sites on northern Vancouver Island. Carbon concentrations were relatively constant across all detrital categories (mean = 556.8 mg/g); concentrations of N and P generally increased, and K generally decreased, with increasing degree of decomposition. The mean mass of woody debris was 363 Mg/ha in the CH and 226 Mg/ha in the HA type. The mean forest floor mass was 280 Mg/ha in the CH and 211 Mg/ha in the HA stands. Approximately 60% of the forest floor mass in each forest type was decaying wood. Dead woody material above and within the forest floor represented a significant store of biomass and nutrients in both forest types, containing 82% of the aboveground detrital biomass, 51–59% of the N, and 58–61% of the detrital P. Forest floors in the CH and HA types contained similar total quantities of N, suggesting that the lower N availability in CH forests is not caused by greater immobilization in detritus. The large accumulation of forest floor and woody debris in this region is attributed to slow decomposition in the cool, wet climate, high rates of detrital input following windstorms, and the large size and decay resistance of western red cedar boles.



1992 ◽  
Vol 22 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Xiwei Yin

Published data were analyzed to examine whether nitrogen (N) availability varies along macroclimatic gradients in North America. Extractable N produced during 8-week aerobic laboratory incubation was used as an index of potential net N mineralization. Mean extractable N during the growing season in the forest floor plus top mineral soil was used as an index of the available N pool. Using multiple regression, potential net N mineralization was shown to increase with available N and with litter-fall N (R2 = 0.722). Available N increased with increasing total soil N and with decreasing mean January and July air temperatures (R2 = 0.770). These relationships appeared to hold also for deciduous and coniferous forests separately across regions. Results suggest that net N mineralization output under uniform temperature and moisture conditions can be generally expressed by variations of N input (litter fall) and the available soil N pool, and that the available soil N pool is predictable along a temperature gradient at a regional scale.



1989 ◽  
Vol 19 (12) ◽  
pp. 1648-1650 ◽  
Author(s):  
Elizabeth Anne France ◽  
Dan Binkley ◽  
David Valentine

After 27 years of stand development, the accumulated forest floor under replicated plots of white pine (Pinusstrobus L.), white spruce (Piceaglauca (Moench) Voss), paper birch (Betulapapyrifera Marsh.), and silver maple (Acersaccharinum L.) ranged from 240 g/m2 under maple to 3680 g/m2 under white pine. Forest floor pH ranged from a low under maple of 3.7 to a high under white spruce of 5.9. No significant differences were found in pH in 0–15 cm depth mineral soil; however, substantial differences in the acid neutralization capacities were evident among species, with soils under maple showing the lowest capacity to resist further acidification.



1989 ◽  
Vol 19 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Stephen C. Hart ◽  
Mary K. Firestone

Three indices of nitrogen (N) availability were compared in the field over a 1-year period in an old-growth and a young-growth mixed-conifer forest. The indices utilized were ion exchange resin (IER) bags, buried bags, and a core-IER method employing intact soil cores enclosed in tubes capped at both ends by IER bags. The results from all three methods indicated that in the surface mineral soil, N availability was higher in the young-growth stand than in the old-growth stand. However, seasonal patterns of N availability were generally not well correlated among the methods (correlation coefficients ranged from 0.32 to 0.62). For a given amount of net N mineralized in buried bags, more N accumulated on IER bags placed in the young-growth stand than in those placed in the old-growth stand. This was the result of greater net nitrification in the young-growth stand coupled with the greater mobility of [Formula: see text] relative to [Formula: see text] in soil. Ten-month estimates of net N mineralization measured by the core-IER and buried-bag methods were similar in the young-growth stand (about 42 mg•kg soil−1), but the core-IER estimate was almost twice that of the buried-bag estimate in the old-growth stand (31.7 and 16.8 mg•kg soil−1, respectively). The different sensitivities of the core-IER and buried-bag methods to changes in soil moisture and leaching probably account for much of the difference in their N availability estimates. Results from the core-IER method did reflect the effects of leaching; however, soil water content within the core did not follow changes in soil water content effectively. Because of the greater labor involved in using the core-IER method, its use may be most efficacious in high-precipitation environments, or when in-field soil incubations must be conducted for extended periods of time.



2016 ◽  
Vol 25 (2) ◽  
pp. e065 ◽  
Author(s):  
Celia Herrero ◽  
María Belén Turrión ◽  
Valentín Pando ◽  
Felipe Bravo

Aim of study: The aim of the study was to determine the baseline carbon stock in forest floor and mineral soils in pine and oak stands in acid soils in Northern Spain.Area of study: The study area is situated in northern Spain (42° N, 4° W) on “Paramos y Valles” region of PalenciaMaterial and methods: An extensive monitoring composed of 48 plots (31 in pine and 17 in oak stands) was carried out. Litter layers and mineral soil samples, at depths of 0-30 cm and 30-60 cm, were taken in each plot. An intensive monitoring was also performed by sampling 12 of these 48 plots selected taken in account species forest composition and their stand development stage. Microbial biomass C (CMB), C mineralization (CRB), and soil organic C balance at stand level were determined in surface soil samples of intensive monitoring.Main results: No differences in soil C content were detected in the two forest ecosystems up to 60 cm depth (53.0±25.8 Mg C ha-1 in Pinus spp. plantations and 60.3±43.8 Mg C ha-1 in oak stands). However, differences in total C (CT), CMB and CRB were found in the upper 10 cm of the soils depending on the stand development stage in each species forest composition (Pinus nigra, Pinus pinaster, Pinus sylvestris and Quercus pyrenaica). Plots with high development stage exhibited significant lower metabolic quotient (qCO2), so, meant more efficient utilization of C by the microbial community. The C content in the forest floor was higher in pine stands (13.7±0.9 Mg C ha-1) than in oak stands (5.4±0.7 Mg C ha-1). A greater turnover time was found in pine ecosystems vs. oak stands. In contrast, forest floor H layer was nonexistent in oak stands.Research highlights: Results about litterfall, forest floor and mineral soil dynamics in this paper can be used strategically to reach environmental goals in new afforestation programs and sustainable forest management approaches.Keywords: C stocks; pine; Quercus pyrenaica; litter; metabolic quotient (qCO2).



2008 ◽  
Vol 61 ◽  
pp. 390-390
Author(s):  
A.J.M. Hopkins ◽  
M.A. Dick ◽  
I.G. Simpson

In southern New Zealand Neonectria fuckeliana is associated with a stem flute canker of Pinus radiata which can result in severe stem malformation and growth loss This research consisting of three distinct experiments aimed to determine pathogen survival in processed and unprocessed wood and woody debris In the first experiment the survival of the pathogen in living trees was examined by sampling trees infected with N fuckeliana in 6 different years In the second experiment the survival of the pathogen in woody debris was examined using 36 infected logs in a range of sizeclasses The logs were left on the forest floor in shaded and unshaded conditions and sampled for N fuckeliana after 4 and 9 months The third experiment examined the survival of the pathogen in processed wood Boards cut from infected trees were tested in six standard timber drying treatments Boards were sampled before and after drying to determine the presence of living N fuckeliana Neonectria fuckeliana was successfully isolated from trees at all infection times tested The fungus was also successfully isolated from 81 of logs after 9 months on the forest floor There was no significant difference between shaded and unshaded treatments Neonectria fuckeliana was not found in any boards following kilndrying but was successfully isolated from 69 of infected boards subjected to the two standard airdrying treatments for 9 weeks



Soil Research ◽  
2009 ◽  
Vol 47 (7) ◽  
pp. 725 ◽  
Author(s):  
D. J. Ross ◽  
N. A. Scott ◽  
S. M. Lambie ◽  
C. M. Trotter ◽  
N. J. Rodda ◽  
...  

Shrubland communities dominated by manuka (Leptospermum scoparium J. Forst. and G. Forst.) and kanuka (Kunzea ericoides var. ericoides ((A. Rich) J. Thompson) are widespread throughout New Zealand. They frequently colonise disturbed land surfaces and are important for erosion mitigation, and also for their capacity to act as a carbon (C) sink. We here investigate C and nitrogen (N) cycling in 3 stands (~26–56 years old) that had established on a repeatedly burned forest site on a Podzolic Orthic Pumice soil in the Turangi area, central North Island. For comparison, limited measurements of N cycling were also made at other manuka–kanuka sites on non-volcanic soils. Leaf N concentrations at the Turangi site were 11.8–13.9 g/kg, and lower than those at many of the other manuka–kanuka stands. Total annual litterfall and N content increased with stand age, as did total N concentrations in FH material and mineral soil (0–100 mm depth). Total C concentrations in mineral soil did not, however, differ significantly in the 3 stands. Levels of soil microbial C and N, rates of carbon dioxide production, and metabolic coefficients (qCO2 values) suggest C cycling could be fairly rapid at this site. In contrast, rates of net mineral-N and nitrate-N production were low to very low compared with those in similar pumice soils under angiosperm–conifer forests, and in the non-volcanic soils under other manuka–kanuka stands. Low N availability and tight N cycling at the Turangi site are thereby strongly suggested. No definitive explanation for the atypically low N availability at this site is apparent, although the possible effects of previous forest burnings may have been a contributing factor. The continued growth of these shrubs, nevertheless, shows they can compete successfully for the N that does become available through gross N mineralisation in the Turangi ecosystem.



2003 ◽  
Vol 177 (1-3) ◽  
pp. 313-321 ◽  
Author(s):  
M.R. Davis ◽  
R.B. Allen ◽  
P.W. Clinton


Sign in / Sign up

Export Citation Format

Share Document