scholarly journals Soaking in Aqueous Ammonia (SAA) Pretreatment of Whole Corn Kernels for Cellulosic Ethanol Production from the Fiber Fractions

Fermentation ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 87
Author(s):  
Katherine Norvell ◽  
Nhuan Nghiem

Corn fiber is a co-product of commercial ethanol dry-grind plants, which is processed into distillers dried grains with solubles (DDGS) and used as animal feed, yet it holds high potential to be used as feedstock for additional ethanol production. Due to the tight structural make-up of corn fiber, a pretreatment step is necessary to make the cellulose and hemicellulose polymers in the solid fibrous matrix more accessible to the hydrolytic enzymes. A pretreatment process was developed in which whole corn kernels were soaked in aqueous solutions of 2.5, 5.0, 7.5, and 10.0 wt% ammonia at 105 °C for 24 h. The pretreated corn then was subjected to a conventional mashing procedure and subsequent ethanol fermentation using a commercial strain of natural Saccharomyces cerevisiae with addition of a commercial cellulase. Pretreatment of the corn with 7.5 wt% ammonia solution plus cellulase addition gave the highest ethanol production, which improved the yield in fermentation using 25 wt% solid from 334 g ethanol/kg corn obtained in the control (no pretreatment and no cellulase addition) to 379 g ethanol/kg corn (a 14% increase). The process developed can potentially be implemented in existing dry-grind ethanol facilities as a “bolt-on” process for additional ethanol production from corn fiber, and this additional ethanol can then qualify as “cellulosic ethanol” by the Environmental Protection Agency’s (EPA’s) Renewable Fuels Standard and thereby receive RINs (Renewable Identification Numbers).

Author(s):  
Katherine Norvell ◽  
Nhuan Nghiem

Corn fiber is a co-product of commercial ethanol dry-grind plants, which is processed into distillers dried grains with solubles (DDGS) and used as animal feed, yet it holds high potential to be used as feedstock for additional ethanol production. Due to the tight structural make-up of corn fiber, a pretreatment step is necessary to make the cellulose and hemicellulose polymers in the solid fibrous matrix more accessible to the hydrolytic enzymes. A pretreatment process was developed in which whole corn kernels were soaked in aqueous solutions of 2.5, 5.0, 7.5 and 10.0 wt% ammonia at 105oC for 24 h. The pretreated corn then was subjected to a conventional mashing procedure and subsequently ethanol fermentation using a commercial strain of natural Saccharomyces cerevisiae with addition of a commercial cellulase. Pretreatment of the corn with 7.5 wt% ammonia solution plus cellulase addition gave highest ethanol production, which improved the yield in fermentation using 25 wt% solid from 334 g ethanol/kg corn obtained in the control (no pretreatment and no cellulase addition) to 379 g ethanol/kg corn (a 14% increase). The process developed can potentially be implemented in existing dry-grind ethanol facilities as a “bolt-on” process for additional ethanol production from corn fiber, and this additional ethanol can then qualify as “cellulosic ethanol” by the EPA’s Renewable Fuels Standard and thereby receive RINS (Renewable Identification Numbers).


Author(s):  
Carlos Eduardo de Araújo Padilha ◽  
Cleitiane da Costa Nogueira ◽  
Bárbara Ribeiro Alves Alencar ◽  
Íthalo Barbosa Silva de Abreu ◽  
Emmanuel Damilano Dutra ◽  
...  

Fermentation ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 86 ◽  
Author(s):  
Cristiano Rodrigues Reis ◽  
Larissa Ogero D’Otaviano ◽  
Aravindan Rajendran ◽  
Bo Hu

Distiller’s grains, an important commodity in the feed and food chains, are currently underdosed in rations due to several factors, mainly nutrient imbalance. This study aimed to increase the linoleic acid content in distiller’s grains and decrease the excess nutrients in stillage water by the use of an artificial lichen, composed of fungi, algae, and a supporting matrix. A maximum concentration of 46.25% of linoleic acid in distiller’s grains was achieved with a combination of Mucor indicus and Chlorella vulgaris using corn-to-ethanol whole stillage as substrate. Microbial hydrolytic enzymes during fermentation were able to decrease the solids in whole stillage. Nitrogen depletion by microalgal uptake causes lipid-formation stress to Mucor indicus cells, increasing linoleic acid production to about 49% of the total lipids, potentially decreasing costs in the animal feed. The culture supernatant can potentially be recycled as process water to the ethanol fermentation tank, and enhanced distiller’s grains can replace animal-specific diets. This would reduce exogenous enzyme use and supplementation of unsaturated fatty acids from other sources.


2012 ◽  
Vol 51 (6-7) ◽  
pp. 366-372 ◽  
Author(s):  
Seung-Ho Baek ◽  
Sujin Kim ◽  
Kyusung Lee ◽  
Jung-Kul Lee ◽  
Ji-Sook Hahn

2011 ◽  
Vol 02 (10) ◽  
pp. 1303-1309 ◽  
Author(s):  
Fabiano A. Gonçalves ◽  
Eliana J. Sanjinez-Argandoña ◽  
Gustavo G. Fonseca

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134964 ◽  
Author(s):  
Viviane Guzzo de Carli Poelking ◽  
Andrea Giordano ◽  
Maria Esther Ricci-Silva ◽  
Thomas Christopher Rhys Williams ◽  
Diego Alves Peçanha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document