scholarly journals Mobility-Enabled Edge Server Selection for Multi-User Composite Services

2019 ◽  
Vol 11 (9) ◽  
pp. 184
Author(s):  
Wenming Zhang ◽  
Yiwen Zhang ◽  
Qilin Wu ◽  
Kai Peng

In mobile edge computing, a set of edge servers is geographically deployed near the mobile users such that accessible computing capacities and services can be provided to users with low latency. Due to user’s mobility, one fundamental and critical problem in mobile edge computing is how to select edge servers for many mobile users so that the total waiting time is minimized. In this paper, we propose a multi-user waiting time computation model about composite services and show the resource contention of the edge server among mobile users. Then, we introduce a novel and optimal Multi-user Edge server Selection method based on Particle swarm optimization (MESP) in mobile edge computing, which selects edge servers for mobile uses in advance within polynomial time. Extensive simulations on a real-world data-trace show that the MESP algorithm can effectively reduce the total waiting time compared with traditional approaches.

Author(s):  
Zhuofan Liao ◽  
Jingsheng Peng ◽  
Bing Xiong ◽  
Jiawei Huang

AbstractWith the combination of Mobile Edge Computing (MEC) and the next generation cellular networks, computation requests from end devices can be offloaded promptly and accurately by edge servers equipped on Base Stations (BSs). However, due to the densified heterogeneous deployment of BSs, the end device may be covered by more than one BS, which brings new challenges for offloading decision, that is whether and where to offload computing tasks for low latency and energy cost. This paper formulates a multi-user-to-multi-servers (MUMS) edge computing problem in ultra-dense cellular networks. The MUMS problem is divided and conquered by two phases, which are server selection and offloading decision. For the server selection phases, mobile users are grouped to one BS considering both physical distance and workload. After the grouping, the original problem is divided into parallel multi-user-to-one-server offloading decision subproblems. To get fast and near-optimal solutions for these subproblems, a distributed offloading strategy based on a binary-coded genetic algorithm is designed to get an adaptive offloading decision. Convergence analysis of the genetic algorithm is given and extensive simulations show that the proposed strategy significantly reduces the average latency and energy consumption of mobile devices. Compared with the state-of-the-art offloading researches, our strategy reduces the average delay by 56% and total energy consumption by 14% in the ultra-dense cellular networks.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 594 ◽  
Author(s):  
Tri Nguyen ◽  
Tien-Dung Nguyen ◽  
Van Nguyen ◽  
Xuan-Qui Pham ◽  
Eui-Nam Huh

By bringing the computation and storage resources close proximity to the mobile network edge, mobile edge computing (MEC) is a key enabling technology for satisfying the Internet of Vehicles (IoV) infotainment applications’ requirements, e.g., video streaming service (VSA). However, the explosive growth of mobile video traffic brings challenges for video streaming providers (VSPs). One known issue is that a huge traffic burden on the vehicular network leads to increasing VSP costs for providing VSA to mobile users (i.e., autonomous vehicles). To address this issue, an efficient resource sharing scheme between underutilized vehicular resources is a promising solution to reduce the cost of serving VSA in the vehicular network. Therefore, we propose a new VSA model based on the lower cost of obtaining data from vehicles and then minimize the VSP’s cost. By using existing data resources from nearby vehicles, our proposal can reduce the cost of providing video service to mobile users. Specifically, we formulate our problem as mixed integer nonlinear programming (MINP) in order to calculate the total payment of the VSP. In addition, we introduce an incentive mechanism to encourage users to rent its resources. Our solution represents a strategy to optimize the VSP serving cost under the quality of service (QoS) requirements. Simulation results demonstrate that our proposed mechanism is possible to achieve up to 21% and 11% cost-savings in terms of the request arrival rate and vehicle speed, in comparison with other existing schemes, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binbin Huang ◽  
Yuanyuan Xiang ◽  
Dongjin Yu ◽  
Jiaojiao Wang ◽  
Zhongjin Li ◽  
...  

Mobile edge computing as a novel computing paradigm brings remote cloud resource to the edge servers nearby mobile users. Within one-hop communication range of mobile users, a number of edge servers equipped with enormous computation and storage resources are deployed. Mobile users can offload their partial or all computation tasks of a workflow application to the edge servers, thereby significantly reducing the completion time of the workflow application. However, due to the open nature of mobile edge computing environment, these tasks, offloaded to the edge servers, are susceptible to be intentionally overheard or tampered by malicious attackers. In addition, the edge computing environment is dynamical and time-variant, which results in the fact that the existing quasistatic workflow application scheduling scheme cannot be applied to the workflow scheduling problem in dynamical mobile edge computing with malicious attacks. To address these two problems, this paper formulates the workflow scheduling problem with risk probability constraint in the dynamic edge computing environment with malicious attacks to be a Markov Decision Process (MDP). To solve this problem, this paper designs a reinforcement learning-based security-aware workflow scheduling (SAWS) scheme. To demonstrate the effectiveness of our proposed SAWS scheme, this paper compares SAWS with MSAWS, AWM, Greedy, and HEFT baseline algorithms in terms of different performance parameters including risk probability, security service, and risk coefficient. The extensive experiments results show that, compared with the four baseline algorithms in workflows of different scales, the SAWS strategy can achieve better execution efficiency while satisfying the risk probability constraints.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Run Yang ◽  
Hui He ◽  
Weizhe Zhang

Mobile edge computing (MEC) pushes computing resources to the edge of the network and distributes them at the edge of the mobile network. Offloading computing tasks to the edge instead of the cloud can reduce computing latency and backhaul load simultaneously. However, new challenges incurred by user mobility and limited coverage of MEC server service arise. Services should be dynamically migrated between multiple MEC servers to maintain service performance due to user movement. Tackling this problem is nontrivial because it is arduous to predict user movement, and service migration will generate service interruptions and redundant network traffic. Service interruption time must be minimized, and redundant network traffic should be reduced to ensure service quality. In this paper, the container live migration technology based on prediction is studied, and an online prediction method based on map data that does not rely on prior knowledge such as user trajectories is proposed to address this challenge in terms of mobility prediction accuracy. A multitier framework and scheduling algorithm are designed to select MEC servers according to moving speeds of users and latency requirements of offloading tasks to reduce redundant network traffic. Based on the map of Beijing, extensive experiments are conducted using simulation platforms and real-world data trace. Experimental results show that our online prediction methods perform better than the common strategy. Our system reduces network traffic by 65% while meeting task delay requirements. Moreover, it can flexibly respond to changes in the user’s moving speed and environment to ensure the stability of offload service.


Author(s):  
Hao Xu ◽  
Ke Li ◽  
Jianfeng Cheng ◽  
Bo Jiang ◽  
Huai Yu

AbstractMobile edge computing can provide short-range cloud computing capability for the mobile users, which is considered to be a promising technology in 5G communication. The mobile users offload some computing tasks to the edge server through the wireless backhaul link, which can reduce the energy consumption and the time latency. Meanwhile, due to the open characteristics of the wireless channel, the offloading tasks through the backhaul link may face the risk of eavesdropping. Therefore, the secure transmission based on physical layer security for the offloading tasks to the edge server is considered. The optimization problem of minimizing the energy consumption for the vehicular stations (VSs) in mobile edge computing-assisted high-speed railway communication system is studied in this paper. The energy consumption of the mobile users is generated by executing the local computing task and by transmitting the partial offloading task to the edge server. In this paper, a novel joint iterative optimization algorithm is proposed. By jointly optimizing the task scheduling, the task offloading and the transmission power, the energy consumption of all VSs is minimized under the constraint of the time latency. Numerical simulation results verify the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document