scholarly journals Cost Benefits of Using Machine Learning Features in NIDS for Cyber Security in UK Small Medium Enterprises (SME)

2021 ◽  
Vol 13 (8) ◽  
pp. 186
Author(s):  
Nisha Rawindaran ◽  
Ambikesh Jayal ◽  
Edmond Prakash ◽  
Chaminda Hewage

Cyber security has made an impact and has challenged Small and Medium Enterprises (SMEs) in their approaches towards how they protect and secure data. With an increase in more wired and wireless connections and devices on SME networks, unpredictable malicious activities and interruptions have risen. Finding the harmony between the advancement of technology and costs has always been a balancing act particularly in convincing the finance directors of these SMEs to invest in capital towards their IT infrastructure. This paper looks at various devices that currently are in the market to detect intrusions and look at how these devices handle prevention strategies for SMEs in their working environment both at home and in the office, in terms of their credibility in handling zero-day attacks against the costs of achieving so. The experiment was set up during the 2020 pandemic referred to as COVID-19 when the world experienced an unprecedented event of large scale. The operational working environment of SMEs reflected the context when the UK went into lockdown. Pre-pandemic would have seen this experiment take full control within an operational office environment; however, COVID-19 times has pushed us into a corner to evaluate every aspect of cybersecurity from the office and keeping the data safe within the home environment. The devices chosen for this experiment were OpenSource such as SNORT and pfSense to detect activities within the home environment, and Cisco, a commercial device, set up within an SME network. All three devices operated in a live environment within the SME network structure with employees being both at home and in the office. All three devices were observed from the rules they displayed, their costs and machine learning techniques integrated within them. The results revealed these aspects to be important in how they identified zero-day attacks. The findings showed that OpenSource devices whilst free to download, required a high level of expertise in personnel to implement and embed machine learning rules into the business solution even for staff working from home. However, when using Cisco, the price reflected the buy-in into this expertise and Cisco’s mainframe network, to give up-to-date information on cyber-attacks. The requirements of the UK General Data Protection Regulations Act (GDPR) were also acknowledged as part of the broader framework of the study. Machine learning techniques such as anomaly-based intrusions did show better detection through a commercially subscription-based model for support from Cisco compared to that of the OpenSource model which required internal expertise in machine learning. A cost model was used to compare the outcome of SMEs’ decision making, in getting the right framework in place in securing their data. In conclusion, finding a balance between IT expertise and costs of products that are able to help SMEs protect and secure their data will benefit the SMEs from using a more intelligent controlled environment with applied machine learning techniques, and not compromising on costs.

2021 ◽  
Vol 2113 (1) ◽  
pp. 012074
Author(s):  
Qiwei Ke

Abstract The volume of the data has been rocketed since the new information era arrives. How to protect information privacy and detect the threat whenever the intrusion happens has become a hot topic. In this essay, we are going to look into the latest machine learning techniques (including deep learning) which are applicable in intrusion detection, malware detection, and vulnerability detection. And the comparison between the traditional methods and novel methods will be demonstrated in detail. Specially, we would examine the whole experiment process of representative examples from recent research projects to give a better insight into how the models function and cooperate. In addition, some potential problems and improvements would be illustrated at the end of each section.


Author(s):  
S. Abijah Roseline ◽  
S. Geetha

Malware is the most serious security threat, which possibly targets billions of devices like personal computers, smartphones, etc. across the world. Malware classification and detection is a challenging task due to the targeted, zero-day, and stealthy nature of advanced and new malwares. The traditional signature detection methods like antivirus software were effective for detecting known malwares. At present, there are various solutions for detection of such unknown malwares employing feature-based machine learning algorithms. Machine learning techniques detect known malwares effectively but are not optimal and show a low accuracy rate for unknown malwares. This chapter explores a novel deep learning model called deep dilated residual network model for malware image classification. The proposed model showed a higher accuracy of 98.50% and 99.14% on Kaggle Malimg and BIG 2015 datasets, respectively. The new malwares can be handled in real-time with minimal human interaction using the proposed deep residual model.


2019 ◽  
pp. 030573561987160 ◽  
Author(s):  
Manuel Anglada-Tort ◽  
Amanda E Krause ◽  
Adrian C North

The present study investigated how the gender distribution of the United Kingdom’s most popular artists has changed over time and the extent to which these changes might relate to popular music lyrics. Using data mining and machine learning techniques, we analyzed all songs that reached the UK weekly top 5 sales charts from 1960 to 2015 (4,222 songs). DICTION software facilitated a computerized analysis of the lyrics, measuring a total of 36 lyrical variables per song. Results showed a significant inequality in gender representation on the charts. However, the presence of female musicians increased significantly over the time span. The most critical inflection points leading to changes in the prevalence of female musicians were in 1968, 1976, and 1984. Linear mixed-effect models showed that the total number of words and the use of self-reference in popular music lyrics changed significantly as a function of musicians’ gender distribution over time, and particularly around the three critical inflection points identified. Irrespective of gender, there was a significant trend toward increasing repetition in the lyrics over time. Results are discussed in terms of the potential advantages of using machine learning techniques to study naturalistic singles sales charts data.


Author(s):  
Sofia Benbelkacem ◽  
Farid Kadri ◽  
Baghdad Atmani ◽  
Sondès Chaabane

Nowadays, emergency department services are confronted to an increasing demand. This situation causes emergency department overcrowding which often increases the length of stay of patients and leads to strain situations. To overcome this issue, emergency department managers must predict the length of stay. In this work, the researchers propose to use machine learning techniques to set up a methodology that supports the management of emergency departments (EDs). The target of this work is to predict the length of stay of patients in the ED in order to prevent strain situations. The experiments were carried out on a real database collected from the pediatric emergency department (PED) in Lille regional hospital center, France. Different machine learning techniques have been used to build the best prediction models. The results seem better with Naive Bayes, C4.5 and SVM methods. In addition, the models based on a subset of attributes proved to be more efficient than models based on the set of attributes.


2017 ◽  
Author(s):  
Guillaume Paré ◽  
Shihong Mao ◽  
Wei Q. Deng

AbstractMachine-learning techniques have helped solve a broad range of prediction problems, yet are not widely used to build polygenic risk scores for the prediction of complex traits. We propose a novel heuristic based on machine-learning techniques (GraBLD) to boost the predictive performance of polygenic risk scores. Gradient boosted regression trees were first used to optimize the weights of SNPs included in the score, followed by a novel regional adjustment for linkage disequilibrium. A calibration set with sample size of ~200 individuals was sufficient for optimal performance. GraBLD yielded prediction R2 of 0.239 and 0.082 using GIANT summary association statistics for height and BMI in the UK Biobank study (N=130K; 1.98M SNPs), explaining 46.9% and 32.7% of the overall polygenic variance, respectively. For diabetes status, the area under the receiver operating characteristic curve was 0.602 in the UK Biobank study using summary-level association statistics from the DIAGRAM consortium. GraBLD outperformed other polygenic score heuristics for the prediction of height (p<2.2x10−16) and BMI (p<1.57x10−4), and was equivalent to LDpred for diabetes. Results were independently validated in the Health and Retirement Study (N=8,292; 688,398 SNPs). Our report demonstrates the use of machine-learning techniques, coupled with summary-level data from large genome-wide meta-analyses to improve the prediction of polygenic traits.


2021 ◽  
Vol 46 (4) ◽  
pp. 36-46
Author(s):  
Ghada Mohamed Amer ◽  
Ehab Abd El Hay ◽  
Ibrahim Abdel-Baset ◽  
Mohamed Abd El Azim Mohamed

An interference discovery framework is customizing that screens a singular or an arrangement of PCs for toxic activities that are away for taking or blue-penciling information or spoiling framework shows. The most methodology used as a piece of the present interference recognition framework is not prepared to deal with the dynamic and complex nature of computerized attacks on PC frameworks. In spite of the way that compelling adaptable methodologies like various frameworks of AI can realize higher discovery rates, cut down bogus alert rates and reasonable estimation and correspondence cost. The use of data mining can realize ceaseless model mining, request, gathering and littler than ordinary data stream. This examination paper portrays a connected with composing audit of AI and data delving procedures for advanced examination in the assistance of interference discovery. In perspective on the number of references or the congruity of a rising methodology, papers addressing each procedure were recognized, examined, and compacted. Since data is so fundamental in AI and data mining draws near, some striking advanced educational records used as a piece of AI and data burrowing are depicted for computerized security is shown, and a couple of recommendations on when to use a given system are given.


Author(s):  
S. Abijah Roseline ◽  
S. Geetha

Malware is the most serious security threat, which possibly targets billions of devices like personal computers, smartphones, etc. across the world. Malware classification and detection is a challenging task due to the targeted, zero-day, and stealthy nature of advanced and new malwares. The traditional signature detection methods like antivirus software were effective for detecting known malwares. At present, there are various solutions for detection of such unknown malwares employing feature-based machine learning algorithms. Machine learning techniques detect known malwares effectively but are not optimal and show a low accuracy rate for unknown malwares. This chapter explores a novel deep learning model called deep dilated residual network model for malware image classification. The proposed model showed a higher accuracy of 98.50% and 99.14% on Kaggle Malimg and BIG 2015 datasets, respectively. The new malwares can be handled in real-time with minimal human interaction using the proposed deep residual model.


Sign in / Sign up

Export Citation Format

Share Document