scholarly journals Thermomagnetic Convection of Paramagnetic Gas in an Enclosure under No Gravity Condition

Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 49 ◽  
Author(s):  
Kewei Song ◽  
Shuai Wu ◽  
Toshio Tagawa ◽  
Weina Shi ◽  
Shuyun Zhao

The thermomagnetic convection of paramagnetic gaseous oxygen in an enclosure under a magnetic field was numerically studied to simulate the thermomagnetic convection in a space environment with no gravity. The magnetic field in the enclosure was non-uniform and was generated by a permanent magnet which had a high magnetic energy product. The magnet was placed at different locations along one of the adiabatic walls with magnetic poles perpendicular to the hot and cold walls of the enclosure. The heat transfer performance, flow field, and temperature field were studied with each location of the magnet. The results show that the thermomagnetic convection in the enclosure was obviously affected by the location of the magnet. There was an optimum magnet location in terms of the best heat transfer performance in the enclosure. The optimum magnet location changed slightly and moved toward the hot wall as the magnetic flux density increased. The value of the Nusselt number, defined as the ratio of convection to conduction, reached up to 2.54 in the studied range of parameters. By optimizing the magnet location, the convection was enhanced by up to 77% at the optimum magnet location.

Author(s):  
Rajesh Nimmagadda ◽  
Durga Prakash Matta ◽  
Rony Reuven ◽  
Lazarus Godson Asirvatham ◽  
Somchai Wongwises ◽  
...  

Abstract A 2D numerical investigation has been carried out to obtain the heat transfer performance of hybrid (Al2O3 + Ag) nanofluid in a lid driven cavity over solid block under the influence of uniform as well as non-uniform magnetic field. The geometrical domain consists of a cavity containing nanofluid that is driven by means of lid moving in one direction. This circulating nanofluid will extract enormous amount of heat from the solid block underneath the cavity resulting in conjugate heat transfer. A homogenous solver based on the finite volume method with conjugate heat transfer was developed and adopted in the existing study. The heat efficient hybrid nanofluid (HyNF) pair (2.4 vol.% Ag + 0.6 vol.% Al2O3) obtained by Nimmagadda and Venkatasubbaiah [1] is used in the present investigation. Moreover, efficient non-uniform sinusoidal magnetic field identified by Nimmagadda et al. [2] is also implemented and compared with uniform magnetic field. Furthermore, the magnetic field is applied over the geometrical domain along the two axial directions separately and the effective heat transfer performance is obtained. The significant impact of extensive parameters like Reynolds number, nanoparticle type, nanoparticle concentration, magnetic field type, magnetic field location and the strength of the magnetic field on heat transfer performance are systematically analyzed and presented.


Author(s):  
J. Lee ◽  
T. Nomura ◽  
E. M. Dede

This paper introduces topology design optimization for a magnetically controlled convective heat transfer cooling system. It is well known that a stationary magnetic field subjected to a temperature gradient generates fluid motion in a magnetic fluid (e.g. ferrofluid). This physical phenomenon may be exploited to drive convective motion in the cooling system to maximize the heat transfer performance. Here, the magnetic field source layout of the system is designed to enhance the heat transfer performance. More specifically, the distribution and magnetization direction of the permanent magnet (PM) field source is optimized to minimize the maximum temperature of a closed loop heat transfer system. The design optimization is performed using a gradient-based topology optimization method with a fully coupled non-linear analysis for magnetic-thermal-fluid systems. Interestingly, magnet designs similar to Halbach arrays are obtained as the optimal PM layout. The magnetic field distribution generated by the designed layout affects the body force that the fluid is subjected to and results in unique fluid flow patterns for maximum cooling performance of the system. Thus, this paper will provide an explanation of the design optimization procedure and provide the design result.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1891
Author(s):  
Elzbieta Fornalik-Wajs ◽  
Aleksandra Roszko ◽  
Janusz Donizak

Application of nanofluids is aimed at enhancing the heat transfer performance the same as the utilization of a strong magnetic field. The potential of the combined effect of these passive and active methods was analyzed numerically. The silver nanofluid thermo-magnetic convection in a cubical enclosure placed in the Rayleigh–Benard configuration was investigated for various concentrations of nanoparticles and various values of magnetic induction at constant temperature difference. The nanofluid flow was considered as a two-phase flow and studied with the Euler–Euler approach. The main outcome was related to the heat transfer performance, but also a lot of attention was paid to the flow structure, which is very difficult to obtain by experimental methods. The results exhibited a flow structure with diagonal axis of symmetry in all analyzed cases and stabilizing effect of magnetic field. The heat transfer performance is indicated by the Nusselt number, which increases with an increasing value of magnetic induction but decreases with an increasing concentration of nanoparticles.


2019 ◽  
Vol 29 (12) ◽  
pp. 4948-4970 ◽  
Author(s):  
Rajesh Nimmagadda ◽  
Godson Asirvatham Lazarus ◽  
Somchai Wongwises

Purpose The purpose of this study is to numerically investigate the effect of jet impingement, magnetic field and nanoparticle shape (sphericity) on the hydrodynamic/heat transfer characteristics of nanofluids over stationary and vibrating plates. Design/methodology/approach A two-dimensional finite volume method-based homogeneous heat transfer model has been developed, validated and used in the present investigation. Three different shapes of non-spherical carbon nanoparticles namely nanotubes, nanorods and nanosheets are used in the analysis. Sphericity-based effective thermal conductivity of nanofluids with Brownian motion of nanoparticles is considered in the investigation. Moreover, the ranges of various comprehensive parameters used in the study are Re = 500 to 900, St = 0.0694 to 0.2083 and Ha = 0 to 80. Findings The hydrodynamic/heat transfer performance of jet impingement in the case of vibrating plate is 298 per cent higher than that of stationary plate at Re = 500. However, for the case of vibrating plate, a reduction in the heat transfer performance of 23.35 per cent is observed by increasing the jet Reynolds number from 500 to 900. In the case of vibrating plate, the saturation point for Strouhal number is found to be 0.0833 at Re = 900 and Ha = 0. Further decrement in St beyond this limit leads to a drastic reduction in the performance. Moreover, no recirculation in the flow is observed near the stagnation point for jet impingement over vibrating plate. It is also observed that the effect of magnetic field enhances the performance of jet impingement over a stationary plate by 36.18 per cent at Ha = 80 and Re = 900. Whereas, opposite trend is observed for the case of vibrating plate. Furthermore, at Re = 500, the percentage enhancement in the Nuavg values of 3 Vol.% carbon nanofluid with nanosheets, nanorods and nanotubes are found to be 47.53, 26.86 and 26.85 per cent when compared with the value obtained for pure water. Practical implications The present results will be useful in choosing nanosheets-based nanofluid as the efficient heat transfer medium in cooling of high power electronic devices. Moreover, the obtained saturation point in the Strouhal number of the vibrating plate will help in cooling of turbine blades, as well as paper and textile drying. Moreover, the developed homogeneous heat transfer model can also be used to study different micro-convection phenomena in nanofluids by considering them as source terms in the momentum equation. Originality/value Impingement of jet over two different plate types such as stationary and vibrating is completely analyzed with the use of a validated in-house FVM code. A complete investigation on the influence of external magnetic field on the performance of plate type configuration is evaluated. The three fundamental shapes of carbon nanoparticles are also evaluated to obtain sphericity based hydrodynamic/heat transfer performance of jet impingement.


Sign in / Sign up

Export Citation Format

Share Document